Learning Data Augmentation with Online Bilevel Optimization for Image Classification

被引:17
作者
Mounsaveng, Saypraseuth [1 ]
Laradji, Issam [2 ]
Ben Ayed, Ismail [1 ]
Vazquez, David [2 ]
Pedersoli, Marco [1 ]
机构
[1] ETS Montreal, Montreal, PQ, Canada
[2] Element AI, Montreal, PQ, Canada
来源
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021) | 2021年
基金
加拿大自然科学与工程研究理事会;
关键词
NEURAL-NETWORKS;
D O I
10.1109/WACV48630.2021.00173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is a key practice in machine learning for improving generalization performance. However, finding the best data augmentation hype rparameters requires domain knowledge or a computationally demanding search. We address this issue by proposing an efficient approach to automatically train a network that learns an effective distribution of transformations to improve its generalization. Using bilevel optimization, we directly optimize the data augmentation parameters using a validation set. This framework can be used as a general solution to learn the optimal data augmentation jointly with an end task model like a classifier. Results show that our joint training method produces an image classification accuracy that is comparable to or better than carefully hand-crafted data augmentation. Yet, it does not need an expensive external validation loop on the data augmentation hyperparaineters.
引用
收藏
页码:1690 / 1699
页数:10
相关论文
共 53 条
[1]  
[Anonymous], 2013, PMLR
[2]  
[Anonymous], 2014, arXiv
[3]   Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks [J].
Antoniou, Antreas ;
Storkey, Amos ;
Edwards, Harrison .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 :594-603
[4]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[5]   Gradient-based optimization of hyperparameters [J].
Bengio, Y .
NEURAL COMPUTATION, 2000, 12 (08) :1889-1900
[6]  
Bergstra J., 2011, Advances in Neural Information Processing Systems
[7]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[8]  
Chongxuan L., 2017, ADV NEURAL INFORM PR, P4091
[9]   An overview of bilevel optimization [J].
Colson, Benoit ;
Marcotte, Patrice ;
Savard, Gilles .
ANNALS OF OPERATIONS RESEARCH, 2007, 153 (01) :235-256
[10]  
Cubuk E. D., 2019, CoRR