Neuromorphic computing with nanoscale spintronic oscillators

被引:984
|
作者
Torrejon, Jacob [1 ]
Riou, Mathieu [1 ]
Araujo, Flavio Abreu [1 ]
Tsunegi, Sumito [2 ]
Khalsa, Guru [3 ,5 ]
Querlioz, Damien [4 ]
Bortolotti, Paolo [1 ]
Cros, Vincent [1 ]
Yakushiji, Kay [2 ]
Fukushima, Akio [2 ]
Kubota, Hitoshi [2 ]
Uasa, Shinji Y. [2 ]
Stiles, Mark D. [2 ,3 ]
Grollier, Julie [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Thales, CNRS,Unite Mixte Phys, F-91767 Palaiseau, France
[2] Natl Inst Adv Ind Sci & Technol, Spintron Res Ctr, Tsukuba, Ibaraki 3058568, Japan
[3] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[4] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol, F-91405 Orsay, France
[5] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
基金
欧洲研究理事会;
关键词
DRIVEN;
D O I
10.1038/nature23011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information(1). Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10(8) oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals(2-5) and several candidates, including memristive(6) and superconducting(7) oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction)(8,9) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.
引用
收藏
页码:428 / +
页数:5
相关论文
共 50 条
  • [11] Spintronic Integrate-Fire-Reset Neuron with Stochasticity for Neuromorphic Computing
    Yang, Qu
    Mishra, Rahul
    Cen, Yunuo
    Shi, Guoyi
    Sharma, Raghav
    Fong, Xuanyao
    Yang, Hyunsoo
    NANO LETTERS, 2022, 22 (21) : 8437 - 8444
  • [12] Spintronic nano-oscillators: towards nanoscale and tunable frequency devices
    Grimaldi, E.
    Lebrun, R.
    Jenkins, A.
    Dussaux, A.
    Grollier, J.
    Cros, V.
    Fert, A.
    Kubota, H.
    Yakushiji, K.
    Fukushima, A.
    Matsumoto, R.
    Yuasa, S.
    Cibiel, G.
    Bortolotti, P.
    Pillet, G.
    2014 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (FCS), 2014, : 44 - 49
  • [13] Computational Investigation of Nanoscale Memristor Devices for Neuromorphic Computing
    Pahinkar, Darshan G.
    Basnet, Pradip
    Zivasatienraj, Bill
    Weidenbach, Alex
    West, Matthew
    Doolittle, W. Alan
    Vogel, Eric
    Graham, Samuel
    PROCEEDINGS OF THE 2019 EIGHTEENTH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2019), 2019, : 219 - 225
  • [14] Integration of nanoscale memristor synapses in neuromorphic computing architectures
    Indiveri, Giacomo
    Linares-Barranco, Bernabe
    Legenstein, Robert
    Deligeorgis, George
    Prodromakis, Themistoklis
    NANOTECHNOLOGY, 2013, 24 (38)
  • [15] LAS-NCS: A Laser-Assisted Spintronic Neuromorphic Computing System
    Farkhani, Hooman
    Prejbeanu, Ioan Lucian
    Moradi, Farshad
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (05) : 838 - 842
  • [16] SPINDLE: SPINtronic Deep Learning Engine for Large-scale Neuromorphic Computing
    Ramasubramanian, Shankar Ganesh
    Venkatesan, Rangharajan
    Sharad, Mrigank
    Roy, Kaushik
    Raghunathan, Anand
    PROCEEDINGS OF THE 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2014, : 15 - 20
  • [17] Fault-Tolerant Neuromorphic Computing on Nanoscale Crossbar Architectures
    Roth, Ron M.
    2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 202 - 207
  • [18] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    陈亚博
    杨晓阔
    闫涛
    危波
    崔焕卿
    李成
    刘嘉豪
    宋明旭
    蔡理
    Chinese Physics Letters, 2020, (07) : 174 - 178
  • [19] Integrating molecular photoswitch memory with nanoscale optoelectronics for neuromorphic computing
    Alcer, David
    Zaiats, Nelia
    Jensen, Thomas K.
    Philip, Abbey M.
    Gkanias, Evripidis
    Ceberg, Nils
    Das, Abhijit
    Flodgren, Vidar
    Heinze, Stanley
    Borgstroem, Magnus T.
    Webb, Barbara
    Laursen, Bo W.
    Mikkelsen, Anders
    COMMUNICATIONS MATERIALS, 2025, 6 (01)
  • [20] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    Chen, Ya-Bo
    Yang, Xiao-Kuo
    Yan, Tao
    Wei, Bo
    Cui, Huan-Qing
    Li, Cheng
    Liu, Jia-Hao
    Song, Ming-Xu
    Cai, Li
    CHINESE PHYSICS LETTERS, 2020, 37 (07)