Computer assisted proof of the existence of the Lorenz attractor in the Shimizu-Morioka system

被引:24
作者
Capinski, Maciej J. [1 ]
Turaev, Dmitry [2 ,3 ]
Zgliczynski, Piotr [4 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Mickiewicza 30, PL-30059 Krakow, Poland
[2] Imperial Coll, London SW7 2AZ, England
[3] Lobachevsky Univ Nizhni Novgorod, Pr Gagarina 23, Nizhnii Novgorod 603950, Russia
[4] Jagiellonian Univ, Inst Comp Sci, Fac Math & Comp Sci, Ul S Lojasiewicza 6, PL-30348 Krakow, Poland
基金
英国工程与自然科学研究理事会;
关键词
Lorenz attractor; Shimizu-Morioka system; computer assisted proof; HENON-LIKE MAPS; HOMOCLINIC BIFURCATION; TRANSITIVE ATTRACTOR; STABILITY; MODEL; TANGENCIES;
D O I
10.1088/1361-6544/aae032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Shimizu-Morioka system has a Lorenz attractor for an open set of parameter values. For the proof we employ a criterion proposed by Shilnikov, which allows to conclude the existence of the attractor by examination of the behaviour of only one orbit. The needed properties of the orbit are established by using computer assisted numerics. Our result is also applied to the study of local bifurcations of triply degenerate periodic points of three-dimensional maps. It provides a formal proof of the birth of discrete Lorenz attractors at various global bifurcations.
引用
收藏
页码:5410 / 5440
页数:31
相关论文
共 40 条
[1]  
AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
[2]  
Afraimovich VS., 1982, T MMO, V44, P150
[3]  
[Anonymous], 2001, WORLD SCI SERIES N A
[4]  
[Anonymous], 1998, MAT SB, DOI [10.4213/sm300, DOI 10.4213/sm300]
[5]   Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation [J].
Arioli, Gianni ;
Koch, Hans .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 :51-70
[6]   Numerical proof of stability of viscous shock profiles [J].
Barker, Blake ;
Zumbrun, Kevin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (13) :2451-2469
[7]   Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow [J].
Barker, Blake .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (08) :2950-2983
[8]   Computer-Assisted Proof of Shil'nikov Homoclinics: With Application to the Lorenz-84 Model [J].
Capinski, Maciej J. ;
Wasieczko-Zajac, Anna .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (03) :1453-1473
[9]   Beyond the Melnikov method: A computer assisted approach [J].
Capinski, Maciej J. ;
Zgliczynski, Piotr .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) :365-417
[10]   Geometric proof for normally hyperbolic invariant manifolds [J].
Capinski, Maciej J. ;
Zgliczynski, Piotr .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) :6215-6286