Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions

被引:52
作者
Wang, Qingxiang [1 ,2 ]
Dastafkan, Kamran [1 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Minnan Normal Univ, Coll Chem & Environm, Zhangzhou 363000, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
HIGHLY EFFICIENT; BIFUNCTIONAL ELECTROCATALYST; WATER OXIDATION; MIXED-OXIDE; NANOSHEETS; CATALYSTS; NANOPARTICLES; REDUCTION; IR;
D O I
10.1016/j.coelec.2018.03.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing highly active electrocatalysts for oxygen evolution reaction (OER) is key to improve the water splitting efficiency for production of clean hydrogen energy. Non-precious transition metal oxides (TMOs) are attractive electrocatalysts for OER but usually suffer from relatively low intrinsic activity, poor electrical conductivity and inferior stability. In this current opinion article, recent design strategies for enhancing TMO-based OER electrocatalysts have been outlined including (i) nanostructuring for enhancing surface area and number of active sites, (ii) tuning catalyst composition and electronic structure for enhancing intrinsic activity of each site, (iii) hybridizing with catalyst support for enhancing conductivity, and stability, and (iv) hierarchical porous electrode architecture for enhancing OER efficiency.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 50 条
[41]   First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings [J].
Zhang, Lihua ;
Fan, Qun ;
Li, Kai ;
Zhang, Sheng ;
Ma, Xinbin .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5417-5432
[42]   Non-precious Metal Catalysts for Two-Electron Oxygen Reduction Reaction [J].
Byeon, Ayeong ;
Yun, Won Chan ;
Kim, Jong Min ;
Lee, Jae W. .
CHEMELECTROCHEM, 2023, 10 (17)
[43]   Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction [J].
Tan, Deming ;
Xiong, Hao ;
Zhang, Tao ;
Fan, Xuelin ;
Wang, Junjie ;
Xu, Fei .
FRONTIERS IN CHEMISTRY, 2022, 10
[44]   Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].
Tian, Yuhui ;
Xu, Li ;
Qiu, Jingxia ;
Liu, Xianhu ;
Zhang, Shanqing .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 25
[45]   Cobalt based non-precious electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells [J].
Ma, Yuanwei ;
Zhang, Huamin ;
Zhong, Hexiang ;
Xu, Ting ;
Jin, Hong ;
Tang, Yongfu ;
Xu, Zhuang .
ELECTROCHIMICA ACTA, 2010, 55 (27) :7945-7950
[46]   Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution [J].
Viswanathan, Venkatasubramanian ;
Pickrahn, Katie L. ;
Luntz, Alan C. ;
Bent, Stacey F. ;
Norskov, Jens K. .
NANO LETTERS, 2014, 14 (10) :5853-5857
[47]   Design and Development of Iron-based Non-precious Metal Catalyst Systems [J].
Sunada, Yusuke ;
Nagashima, Hideo .
JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 2017, 75 (12) :1253-1263
[48]   Recent advances in transition metal sulphide-based electrocatalysts for the oxygen and hydrogen evolution reactions [J].
Wang, Tao ;
Li, Jun ;
Xiao, Linfeng ;
Gao, Sanshuang ;
Yu, Juan ;
Liu, Weiping ;
Liu, Qian ;
Hu, Guangzhi .
SURFACES AND INTERFACES, 2025, 70
[49]   A non-precious metal bifunctional oxygen electrode for alkaline anion exchange membrane cells [J].
Wu, Xu ;
Scott, Keith .
JOURNAL OF POWER SOURCES, 2012, 206 :14-19
[50]   Non-precious Melamine/Chitosan Composites for the Oxygen Reduction Reaction: Effect of the Transition Metal [J].
Aghabarari, B. ;
Martinez-Huerta, M., V ;
Capel-Sanchez, M. C. ;
Lazaro, M. J. .
FRONTIERS IN MATERIALS, 2020, 7