The zinc cluster transcription factor Tac1p regulates PDR16 expression in Candida albicans

被引:79
作者
Znaidi, Sadri
De Deken, Xavier
Weber, Sandra
Rigby, Tracey
Nantel, Andre
Raymond, Martine [1 ]
机构
[1] Univ Montreal, Inst Res Immunol & Canc, Montreal, PQ H3C 3J7, Canada
[2] Biotechnol Res Inst, Natl Res Council Canada, Montreal, PQ H4P 2R2, Canada
[3] Univ Montreal, Dept Biochem, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.1111/j.1365-2958.2007.05931.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Candida albicans PDR16 gene, encoding a putative phosphatidylinositol transfer protein, is co-induced with the multidrug transporter genes CDR1 and CDR2 in azole-resistant (A(R)) clinical isolates and upon fluphenazine exposure of azole-susceptible (A(S)) cells, suggesting that it is regulated by Tac1p, the transcriptional activator of CDR genes. Deleting TAC1 in an A(R) isolate (5674) overexpressing PDR16, CDR1 and CDR2 decreased the expression of the three genes and fluconazole resistance to levels similar to those detected in the matched A(S) isolate (5457), demonstrating that Tac1p is responsible for PDR16 upregulation in that strain. Deleting TAC1 in the A(S) strain SC5314 abolished CDR2 induction by fluphenazine and decreased that of PDR16 and CDR1, uncovering the participation of an additional factor in the regulation of PDR16 and CDR1 expression. Sequencing of the TAC1 alleles identified one homozygous mutation in strain 5674, an Asn to Asp substitution at position 972 in the C-terminus of Tac1p. Introduction of the Asp(972) allele in a tac1 Delta/Delta mutant caused high levels of fluconazole resistance and TAC1, PDR16, CDR1 and CDR2 constitutive induction. These results demonstrate that: (i) Tac1p controls PDR16 expression; (ii) Asn(972) to Asp(972) is a gain-of-function mutation; and (iii) Tac1p is positively autoregulated, directly or indirectly.
引用
收藏
页码:440 / 452
页数:13
相关论文
共 49 条
[41]   Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains [J].
Selmecki, A ;
Bergmann, S ;
Berman, J .
MOLECULAR MICROBIOLOGY, 2005, 55 (05) :1553-1565
[42]   Aneuploidy and isochromosome formation in drug-resistant Candida albicans [J].
Selmecki, Anna ;
Forche, Anja ;
Berman, Judith .
SCIENCE, 2006, 313 (5785) :367-370
[43]  
SHERMAN F, 1991, METHOD ENZYMOL, V194, P3
[44]   Isolation and molecular characterization of the carboxy-terminal pdr3 mutants in Saccharomyces cerevisiae [J].
Simonics, T ;
Kozovska, Z ;
Michalkova-Papajova, D ;
Delahodde, A ;
Jacq, C ;
Subik, J .
CURRENT GENETICS, 2000, 38 (05) :248-255
[45]   Invasive candidiasis in immunocompromised hospitalized patients [J].
Sims, CR ;
Ostrosky-Zeichner, L ;
Rex, JH .
ARCHIVES OF MEDICAL RESEARCH, 2005, 36 (06) :660-671
[46]   ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators [J].
Smriti ;
Krishnamurthy, S ;
Dixit, BL ;
Gupta, CM ;
Milewski, S ;
Prasad, R .
YEAST, 2002, 19 (04) :303-318
[47]   The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J].
Thompson, JD ;
Gibson, TJ ;
Plewniak, F ;
Jeanmougin, F ;
Higgins, DG .
NUCLEIC ACIDS RESEARCH, 1997, 25 (24) :4876-4882
[48]   Targeted gene disruption in Candida albicans wild-type strains:: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates [J].
Wirsching, S ;
Michel, S ;
Morschhäuser, J .
MOLECULAR MICROBIOLOGY, 2000, 36 (04) :856-865
[49]   Genome-wide expression monitoring in Saccharomyces cerevisiae [J].
Wodicka, L ;
Dong, HL ;
Mittmann, M ;
Ho, MH ;
Lockhart, DJ .
NATURE BIOTECHNOLOGY, 1997, 15 (13) :1359-1367