Autoencoder Network for Hyperspectral Unmixing With Adaptive Abundance Smoothing

被引:25
作者
Hua, Ziqiang [1 ]
Li, Xiaorun [1 ]
Qiu, Qunhui [2 ]
Zhao, Liaoying [3 ]
机构
[1] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
[2] State Grid Liming Power Supply Co, Jiaxing 314100, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
关键词
Adaptive abundance smoothing (AAS); autoencoder; hyperspectral imagery (HSI); spectral unmixing (SU);
D O I
10.1109/LGRS.2020.3005999
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Autoencoder is an efficient technique for unsupervised feature learning, which can be applied to hyperspectral unmixing. In this letter, we present an autoencoder network with adaptive abundance smoothing (AAS) to solve the challenges of previous techniques. Specifically, the proposed method uses a multilayer encoder to obtain the abundance and a single-layer decoder to reconstruct the image. The AAS algorithm tackles the outliers by exploiting the spatial-contextual information and can be adaptive for each pixel. Moreover, the softmax function is used as the encoder output function with the help of L-1/2 regularization to produce sparse output. Experimental results of the synthetic and real data reveal the superior performance of the proposed method against other competitors.
引用
收藏
页码:1640 / 1644
页数:5
相关论文
共 16 条
[1]   A new growing method for simplex-based endmember extraction algorithm [J].
Chang, Chein-I ;
Wu, Chao-Cheng ;
Liu, Wei-min ;
Ouyang, Yen-Chieh .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2804-2819
[2]  
Guo R., 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), P1, DOI DOI 10.1109/WHISPERS.2015.8075378
[3]   An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing [J].
Hong, Danfeng ;
Yokoya, Naoto ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) :1923-1938
[4]   Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4484-4502
[5]   Spectral-Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder [J].
Ma, Xiaorui ;
Wang, Hongyu ;
Geng, Jie .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) :4073-4085
[6]   Vertex component analysis: A fast algorithm to unmix hyperspectral data [J].
Nascimento, JMP ;
Dias, JMB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :898-910
[7]   Hyperspectral Unmixing via L1/2 Sparsity-Constrained Nonnegative Matrix Factorization [J].
Qian, Yuntao ;
Jia, Sen ;
Zhou, Jun ;
Robles-Kelly, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4282-4297
[8]   uDAS: An Untied Denoising Autoencoder With Sparsity for Spectral Unmixing [J].
Qu, Ying ;
Qi, Hairong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03) :1698-1712
[9]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35
[10]   DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing [J].
Su, Yuanchao ;
Li, Jun ;
Plaza, Antonio ;
Marinoni, Andrea ;
Gamba, Paolo ;
Chakravortty, Somdatta .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07) :4309-4321