A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems

被引:168
作者
Qu, B. Y. [1 ,2 ]
Zhu, Y. S. [1 ,3 ]
Jiao, Y. C. [1 ]
Wu, M. Y. [1 ]
Suganthan, P. N. [4 ]
Liang, J. J. [1 ,3 ]
机构
[1] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Evolutionary algorithms (EAs); Multi-objective evolutionary algorithms (MOEAs); Environmental economic dispatch (EED); Wind power; Electric vehicles; Multi-objective optimization; ECONOMIC EMISSION DISPATCH; PARTICLE SWARM OPTIMIZATION; LEARNING-BASED OPTIMIZATION; RENEWABLE ENERGY-SOURCES; BEE COLONY ALGORITHM; POWER DISPATCH; GENETIC ALGORITHM; LOAD DISPATCH; WIND; SEARCH;
D O I
10.1016/j.swevo.2017.06.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Development of efficient multi-objective evolutionary algorithms (MOEAs) has provided effective tools to solve environmental/economic dispatch (EED) problems. EED is a highly constrained complex bi-objective optimization problem. Since 1990s, numerous publications have reported the applications of MOEAs to solve the EED problems. This paper surveys the state-of-the-art of research related to this direction. It covers topics of typical MOEAs, classical EED problems, Dynamic EED problems, EED problems incorporating wind power, EED problems incorporating electric vehicles and EED problems within micro-grids. In addition, some potential directions for future research are also presented.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 111 条
[1]  
Abarghooee R. A., 2011, 2011 IEEE Power Engineering and Automation Conference (PEAM 2011), P158, DOI 10.1109/PEAM.2011.6134825
[2]   Combined economic and emission dispatch solution using Flower Pollination Algorithm [J].
Abdelaziz, A. Y. ;
Ali, E. S. ;
Abd Elazim, S. M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 80 :264-274
[3]   Multiobjective evolutionary algorithms for electric power dispatch problem [J].
Abido, M. A. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :315-329
[4]   Multiobjective particle swarm optimization for environmental/economic dispatch problem [J].
Abido, M. A. .
ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (07) :1105-1113
[5]  
Abido M.A., 2001, P IEEE PES SUMM M VA, V65, P71
[6]   Environmental/economic power dispatch using multiobjective evolutionary algorithms [J].
Abido, MA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) :1529-1537
[7]   A novel multiobjective evolutionary algorithm or environmental/economic power dispatch [J].
Abido, MA .
ELECTRIC POWER SYSTEMS RESEARCH, 2003, 65 (01) :71-81
[8]   A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (02) :97-105
[9]   Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable [J].
Afzalan, Ehsan ;
Joorabian, Mahmood .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 52 :55-67
[10]   Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties [J].
Aghaei, Jamshid ;
Niknam, Taher ;
Azizipanah-Abarghooee, Rasoul ;
Arroyo, Jose M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 47 :351-367