Global Stability of Multigroup Dengue Disease Transmission Model

被引:10
作者
Ding, Deqiong [1 ]
Wang, Xueping [2 ]
Ding, Xiaohua [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
[2] Urumqi Vocat Univ, Dept Educ, Urumqi 830002, Peoples R China
关键词
NONLINEAR INCIDENCE; FEVER;
D O I
10.1155/2012/342472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a class of multigroup dengue epidemic model. We show that the global dynamics are determined by the basic reproductive number R-0. We present that when R-0 <= 1, there is a unique disease-free equilibrium which is globally asymptotically stable; when R-0 > 1, there exists a unique endemic equilibrium and it is globally asymptotically stable proved by a graph-theoretic approach to the method of global Lyapunov function.
引用
收藏
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]  
[Anonymous], 1985, Matrix Analysis
[3]  
Bhatia N. P, 1967, Lecture Notes in Mathematics, V1, P113
[4]   Dengue fever in travellers: A challenge for European physicians [J].
Bulugahapitiya, Uditha ;
Siyambalapitiya, Sajith ;
Seneviratne, Suranjith L. ;
Fernando, Devaka J. S. .
EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2007, 18 (03) :185-192
[5]   Global dynamics of a dengue epidemic mathematical model [J].
Cai, Liming ;
Guo, Shumin ;
Li, XueZhi ;
Ghosh, Mini .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2297-2304
[6]   Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates [J].
Chen, Hao ;
Sun, Jitao .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) :4391-4400
[7]   Analysis of a Dengue disease transmission model [J].
Esteva, L ;
Vargas, C .
MATHEMATICAL BIOSCIENCES, 1998, 150 (02) :131-151
[8]  
Freedman HI., 1994, J DYN DIFFER EQU, V6, P583, DOI [10.1007/BF02218848, DOI 10.1007/BF02218848]
[9]  
Guo H., 2006, Can. Appl. Math. Q., V14, P259
[10]   A graph-theoretic approach to the method of global Lyapunov functions [J].
Guo, Hongbin ;
Li, Michael Y. ;
Shuai, Zhisheng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2793-2802