A Note on the Legendre Series Solution of the Biharmonic Equation for Cylindrical Problems

被引:6
|
作者
Strozzi, Antonio [1 ]
机构
[1] Univ Modena, I-41125 Modena, Italy
关键词
Biharmonic equation; Cylindrical problems; Stress function; Series solution; Legendre polynomials;
D O I
10.1007/s10659-011-9353-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The solution of cylindrical problems is addressed. A series solution is considered of the biharmonic equation, in which the series terms of the stress function I broken vertical bar are expressions based upon Legendre polynomials and logarithmically singular functions. An explicit form of a polynomial supplementing each logarithmically singular part of the series solution is obtained.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [21] Solution of the Cauchy problem for the biharmonic equation
    Zeb, A.
    Elliott, L.
    Ingham, D.B.
    Lesnic, D.
    Proceedings of the International Conference on Boundary Element Method, 1997, : 749 - 756
  • [22] Overdetermined problems for the inhomogeneous biharmonic equation
    Schaefer, P. W.
    International Journal of Mathematical Education in Science and Technology, 29 (03):
  • [23] Solution of the Cauchy problem for the biharmonic equation
    Zeb, A
    Elliott, L
    Ingham, DB
    Lesnic, D
    BOUNDARY ELEMENTS XIX, 1997, : 749 - 756
  • [24] SOLUTION TO BIHARMONIC EQUATION WITH VANISHING POTENTIAL
    Bastos, Waldemar D.
    Miyagaki, Olimpio H.
    Vieira, Ronei S.
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) : 839 - 854
  • [25] DIRECT SOLUTION OF DISCRETE BIHARMONIC EQUATION
    BUZBEE, BL
    DORR, FW
    SIAM REVIEW, 1974, 16 (01) : 118 - 118
  • [26] ON THE NUMERICAL-SOLUTION OF THE BIHARMONIC EQUATION
    POCESKI, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (05): : T369 - T371
  • [27] A note on an asymptotic solution of the cylindrical Korteweg-de Vries equation
    Johnson, RS
    WAVE MOTION, 1999, 30 (01) : 1 - 16
  • [28] A Note on f-biharmonic Legendre Curves in S-space Forms
    Guvenc, Saban
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (02): : 260 - 267
  • [30] ON THE NUMERICAL-SOLUTION OF THE BIHARMONIC EQUATION IN THE PLANE
    GREENBAUM, A
    GREENGARD, L
    MAYO, A
    PHYSICA D, 1992, 60 (1-4): : 216 - 225