Transfer Learning for Adenocarcinoma Classifications in the Transurethral Resection of Prostate Whole-Slide Images

被引:5
作者
Tsuneki, Masayuki [1 ]
Abe, Makoto [2 ]
Kanavati, Fahdi [1 ]
机构
[1] Medmain Inc, Medmain Res, Fukuoka 8100042, Japan
[2] Tochigi Canc Ctr, Dept Pathol, 4-9-13 Yohnan, Utsunomiya, Tochigi 3200834, Japan
关键词
weakly supervised learning; transfer learning; deep learning; adenocarcinoma; transurethral resection of the prostate; whole-slide image; CANCER; CARCINOMA; T1A;
D O I
10.3390/cancers14194744
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary In this study, we trained deep learning models to classify TUR-P WSIs into prostate adenocarcinoma and benign (non-neoplastic) lesions using transfer and weakly supervised learning. Overall, the model achieved good classification performance in classifying whole-slide images, demonstrating the potential benefit of future deployments in a practical TUR-P histopathological diagnostic workflow system. The transurethral resection of the prostate (TUR-P) is an option for benign prostatic diseases, especially nodular hyperplasia patients who have moderate to severe urinary problems that have not responded to medication. Importantly, incidental prostate cancer is diagnosed at the time of TUR-P for benign prostatic disease. TUR-P specimens contain a large number of fragmented prostate tissues; this makes them time consuming to examine for pathologists as they have to check each fragment one by one. In this study, we trained deep learning models to classify TUR-P WSIs into prostate adenocarcinoma and benign (non-neoplastic) lesions using transfer and weakly supervised learning. We evaluated the models on TUR-P, needle biopsy, and The Cancer Genome Atlas (TCGA) public dataset test sets, achieving an ROC-AUC up to 0.984 in TUR-P test sets for adenocarcinoma. The results demonstrate the promising potential of deployment in a practical TUR-P histopathological diagnostic workflow system to improve the efficiency of pathologists.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images [J].
Cheng, Na ;
Ren, Yong ;
Zhou, Jing ;
Zhang, Yiwang ;
Wang, Deyu ;
Zhang, Xiaofang ;
Chen, Bing ;
Liu, Fang ;
Lv, Jin ;
Cao, Qinghua ;
Chen, Sijin ;
Du, Hong ;
Hui, Dayang ;
Weng, Zijin ;
Liang, Qiong ;
Su, Bojin ;
Tang, Luying ;
Han, Lanqing ;
Chen, Jianning ;
Shao, Chunkui .
GASTROENTEROLOGY, 2022, 162 (07) :1948-+
[42]   Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images [J].
Wang, Zhenzhen ;
Saoud, Carla ;
Wangsiricharoen, Sintawat ;
James, Aaron W. ;
Popel, Aleksander S. ;
Sulam, Jeremias .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) :3952-3968
[43]   Fast and scalable search of whole-slide images via self-supervised deep learning [J].
Chen, Chengkuan ;
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Schaumberg, Andrew J. ;
Mahmood, Faisal .
NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) :1420-+
[44]   Comprehensive Framework for Tuberculosis Detection Using Deep Learning and Image Processing in Whole-Slide Images [J].
Micaraseth, Terisara ;
Shuangshoti, Shanop ;
Chaiprabha, Kantawatchr ;
Wanpiyarat, Natcha ;
Chantranuwatana, Poonchavist ;
Phanomchoeng, Gridsada .
IEEE ACCESS, 2025, 13 :83694-83716
[45]   A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images [J].
Kanavati, Fahdi ;
Tsuneki, Masayuki .
SCIENTIFIC REPORTS, 2021, 11 (01)
[46]   Real-time segmentation and classification of whole-slide images for tumor biomarker scoring [J].
Hasan, Md Jahid ;
Ahmad, Wan Siti Halimatul Munirah Wan ;
Fauzi, Mohammad Faizal Ahmad ;
Lee, Jenny Tung Hiong ;
Khor, See Yee ;
Looi, Lai Meng ;
Abas, Fazly Salleh ;
Adam, Afzan ;
Chan, Elaine Wan Ling .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (09)
[47]   Automatic tumour segmentation in H&E-stained whole-slide images of the pancreas [J].
Vendittelli, P. ;
Smeets, E. M. M. ;
Litjens, G. J. S. .
MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
[48]   Schistosomiasis on prostate biopsy, adenocarcinoma on transurethral resection of prostate specimens [J].
Mukendi, Alain Mwamba ;
Doherty, Sean ;
Ngobese, Lungi E. .
JOURNAL OF CLINICAL UROLOGY, 2020, 13 (06) :451-453
[49]   SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images [J].
Zormpas-Petridis, Konstantinos ;
Noguera, Rosa ;
Ivankovic, Daniela Kolarevic ;
Roxanis, Ioannis ;
Jamin, Yann ;
Yuan, Yinyin .
FRONTIERS IN ONCOLOGY, 2021, 10
[50]   Automated histological classification of whole-slide images of gastric biopsy specimens [J].
Yoshida, Hiroshi ;
Shimazu, Taichi ;
Kiyuna, Tomoharu ;
Marugame, Atsushi ;
Yamashita, Yoshiko ;
Cosatto, Eric ;
Taniguchi, Hirokazu ;
Sekine, Shigeki ;
Ochiai, Atsushi .
GASTRIC CANCER, 2018, 21 (02) :249-257