A Low-Rank Inexact Newton-Krylov Method for Stochastic Eigenvalue Problems

被引:14
作者
Benner, Peter [1 ]
Onwunta, Akwum [1 ]
Stoll, Martin [2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] Tech Univ Chemnitz, Fac Math, Sci Comp, D-09107 Chemnitz, Germany
关键词
Stochastic Galerkin System; Krylov Methods; Eigenvalues; Eigenvectors; Low-Rank Solution; Preconditioning; FULLY COUPLED SOLUTION; DAVIDSON TYPE METHOD; FORCING TERMS; EQUATIONS; GMRES; PDES;
D O I
10.1515/cmam-2018-0030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at the efficient numerical solution of stochastic eigenvalue problems. Such problems often lead to prohibitively high-dimensional systems with tensor product structure when discretized with the stochastic Galerkin method. Here, we exploit this inherent tensor product structure to develop a globalized low-rank inexact Newton method with which we tackle the stochastic eigenproblem. We illustrate the effectiveness of our solver with numerical experiments.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
[41]   Low-Rank Eigenvector Compression of Posterior Covariance Matrices for Linear Gaussian Inverse Problems [J].
Benner, Peter ;
Qiu, Yue ;
Stoll, Martin .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02) :965-989
[42]   Jacobian-free Newton-Krylov method for implicit time-spectral solution of the compressible Navier-Stokes equations [J].
Attar, Peter J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 79 (01) :1-15
[43]   Off-diagonal low-rank preconditioner for difficult PageRank problems [J].
Shen, Zhao-Li ;
Huang, Ting-Zhu ;
Carpentieri, Bruno ;
Wen, Chun ;
Gu, Xian-Ming ;
Tan, Xue-Yuan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 :456-470
[44]   A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems [J].
Quillen, Patrick ;
Ye, Qiang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (05) :1298-1313
[45]   A low-rank approach to the solution of weak constraint variational data assimilation problems [J].
Freitag, Melina A. ;
Green, Daniel L. H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 357 :263-281
[46]   Newton's Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory [J].
Gill, Daniel F. ;
Azmy, Yousry Y. .
NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (02) :141-153
[47]   A NEWTON METHOD FOR SOLVING LOCALLY DEFINITE MULTIPARAMETER EIGENVALUE PROBLEMS BY MULTI-INDEX [J].
Eisenmann, Henrik .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2025, 46 (02) :906-933
[48]   Parallel Two-Grid Semismooth Newton-Krylov-Schwarz Method for Nonlinear Complementarity Problems [J].
Yang, Haijian ;
Cai, Xiao-Chuan .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (02) :258-280
[49]   An improved extended block Arnoldi method for solving low-rank Lyapunov equation [J].
Abdaoui, Ilias .
JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (01) :85-98
[50]   An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem [J].
Grippo, Luigi ;
Palagi, Laura ;
Piccialli, Veronica .
MATHEMATICAL PROGRAMMING, 2011, 126 (01) :119-146