A Low-Rank Inexact Newton-Krylov Method for Stochastic Eigenvalue Problems

被引:14
作者
Benner, Peter [1 ]
Onwunta, Akwum [1 ]
Stoll, Martin [2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] Tech Univ Chemnitz, Fac Math, Sci Comp, D-09107 Chemnitz, Germany
关键词
Stochastic Galerkin System; Krylov Methods; Eigenvalues; Eigenvectors; Low-Rank Solution; Preconditioning; FULLY COUPLED SOLUTION; DAVIDSON TYPE METHOD; FORCING TERMS; EQUATIONS; GMRES; PDES;
D O I
10.1515/cmam-2018-0030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at the efficient numerical solution of stochastic eigenvalue problems. Such problems often lead to prohibitively high-dimensional systems with tensor product structure when discretized with the stochastic Galerkin method. Here, we exploit this inherent tensor product structure to develop a globalized low-rank inexact Newton method with which we tackle the stochastic eigenproblem. We illustrate the effectiveness of our solver with numerical experiments.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
[31]   Fast Low-Rank Solution of the Multidimensional Hyperbolic Problems [J].
Zhong Z. ;
Wang S. ;
Wang K. .
Computational Mathematics and Modeling, 2018, 29 (3) :344-358
[32]   ADAPTIVE LOW-RANK METHODS: PROBLEMS ON SOBOLEV SPACES [J].
Bachmayr, Markus ;
Dahmen, Wolfgang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :744-796
[33]   Application of the Jacobi–Davidson method for spectral low-rank preconditioning in computational electromagnetics problems [J].
Mas J. ;
Cerdán J. ;
Malla N. ;
Marín J. .
SeMA Journal, 2015, 67 (1) :39-50
[34]   Reacting flow analysis of a cavity-based scramjet combustor using a Jacobian-free Newton-Krylov method [J].
Rouzbar, R. ;
Eyi, S. .
AERONAUTICAL JOURNAL, 2018, 122 (1258) :1884-1915
[35]   An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems [J].
Golub, GH ;
Ye, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :312-334
[36]   Implementation of the Jacobian-free Newton-Krylov method for solving the first-order ice sheet momentum balance [J].
Lemieux, Jean-Francois ;
Price, Stephen F. ;
Evans, Katherine J. ;
Knoll, Dana ;
Salinger, Andrew G. ;
Holland, David M. ;
Payne, Antony J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (17) :6531-6545
[37]   ON THE STABILITY OF ROBUST DYNAMICAL LOW-RANK APPROXIMATIONS FOR HYPERBOLIC PROBLEMS [J].
Kusch, Jonas ;
Einkemmer, Lukas ;
Ceruti, Gianluca .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (01) :A1-A24
[38]   On critical points of quadratic low-rank matrix optimization problems [J].
Uschmajew, Andre ;
Vandereycken, Bart .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) :2626-2651
[39]   Finite difference Jacobian based Newton-Krylov coupling method for solving multi-physics nonlinear system of nuclear reactor [J].
Liu, Baokun ;
Wu, Yingjie ;
Guo, Jiong ;
Zhang, Han ;
Niu, Jinlin ;
Li, Fu .
ANNALS OF NUCLEAR ENERGY, 2020, 148
[40]   A Newton-type method for two-dimensional eigenvalue problems [J].
Lu, Tianyi ;
Su, Yangfeng .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)