A Low-Rank Inexact Newton-Krylov Method for Stochastic Eigenvalue Problems

被引:12
|
作者
Benner, Peter [1 ]
Onwunta, Akwum [1 ]
Stoll, Martin [2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] Tech Univ Chemnitz, Fac Math, Sci Comp, D-09107 Chemnitz, Germany
关键词
Stochastic Galerkin System; Krylov Methods; Eigenvalues; Eigenvectors; Low-Rank Solution; Preconditioning; FULLY COUPLED SOLUTION; DAVIDSON TYPE METHOD; FORCING TERMS; EQUATIONS; GMRES; PDES;
D O I
10.1515/cmam-2018-0030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at the efficient numerical solution of stochastic eigenvalue problems. Such problems often lead to prohibitively high-dimensional systems with tensor product structure when discretized with the stochastic Galerkin method. Here, we exploit this inherent tensor product structure to develop a globalized low-rank inexact Newton method with which we tackle the stochastic eigenproblem. We illustrate the effectiveness of our solver with numerical experiments.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [1] Scalable Newton-Krylov Solver for Very Large Power Flow Problems
    Idema, Reijer
    Lahaye, Domenico J. P.
    Vuik, Cornelis
    van der Sluis, Lou
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) : 390 - 396
  • [2] A Newton-Krylov method for solid mechanics
    Tardieu, N.
    Cheignon, E.
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2012, 21 (3-6): : 374 - 384
  • [3] KRYLOV METHODS FOR LOW-RANK REGULARIZATION
    Gazzola, Silvia
    Meng, Chang
    Nagy, James G.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1477 - 1504
  • [4] Globally and superlinearly convergent inexact Newton-Krylov algorithms for solving nonsmooth equations
    Chen, Jinhai
    Qi, Liqun
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (01) : 155 - 174
  • [5] Wavelet preconditioned Newton-Krylov method for elastohydrodynamic lubrication of line contact problems
    Bujurke, N. M.
    Kantli, M. H.
    Shettar, Bharati M.
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 285 - 298
  • [6] Newton-Krylov method for computing the cyclic steady states of evolution problems in nonlinear mechanics
    Khristenko, Ustim
    Le Tallec, Patrick
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (03) : 178 - 201
  • [7] Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method
    Knoll, D. A.
    Park, H.
    Newman, C.
    NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (02) : 133 - 140
  • [8] PRECONDITIONED INEXACT NEWTON-LIKE METHOD FOR LARGE NONSYMMETRIC EIGENVALUE PROBLEMS
    Miao, Hong-Yi
    Wang, Li
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2021, 11 (04): : 677 - 685
  • [9] A Jacobian-free Newton-Krylov method for thermalhydraulics simulations
    Ashrafizadeh, A.
    Devaud, C. B.
    Aydemir, N. U.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (10) : 590 - 615
  • [10] A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems
    Shin, Byeong-Chun
    Darvishi, M. T.
    Kim, Chang-Hyun
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3190 - 3198