Towards analytical convergence analysis of proportionate-type, NLMS algorithms

被引:19
作者
Wagner, Kevin T. [1 ]
Doroslovacki, Milos I. [2 ]
机构
[1] USN, Res Lab, Div Radar, Washington, DC 20375 USA
[2] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
adaptive filtering; convergence; proportionate-type normalized least mean square (PtNLMS) algorithm; sparse impulse response;
D O I
10.1109/ICASSP.2008.4518487
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To date no theoretical results have been developed to predict the performance of the proportionate normalized least mean square (PNLMS) algorithm or any of its cousin algorithms such as the mu-law PNLMS (MPNLMS), and the epsilon-law PNLMS (EPNLMS). In this paper we develop an analytic approach to predicting the performance of the simplified PNLMS algorithm which is closely related to the PNLMS algorithm. In particular we demonstrate die ability to predict the Mean Square Output Error of the simplified PNLMS algorithm using our theory.
引用
收藏
页码:3825 / +
页数:2
相关论文
共 50 条
[21]   Convergence of algorithms used for principal component analysis [J].
Junhua Zhang ;
Hanfu Chen .
Science in China Series E: Technological Sciences, 1997, 40 :597-604
[22]   Convergence of algorithms used for principal component analysis [J].
张俊华 ;
陈翰馥 .
Science in China(Series E:Technological Sciences), 1997, (06) :597-604
[23]   A convergence analysis of generalized hill climbing algorithms [J].
Sullivan, KA ;
Jacobson, SH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (08) :1288-1293
[24]   The Convergence of Party Funding Regimes in Western Europe: Towards an Analytical Framework [J].
Koss, Michael .
OSTERREICHISCHE ZEITSCHRIFT FUR POLITIKWISSENSCHAFT, 2008, 37 (01) :63-+
[25]   An analysis on convergence and convergence rate estimate of elitist genetic algorithms in noisy environments [J].
Li, Jun-hua ;
Li, Ming .
OPTIK, 2013, 124 (24) :6780-6785
[26]   Convergence and Limit of Mean-Value Analysis Algorithms [J].
Bogardi-Meszoly, Agnes ;
Levendovszky, Tihamer ;
Charaf, Hassan ;
Szeghegyi, Agnes .
PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS , PTS 1-3: NEW ASPECTS OF COMPUTERS, 2008, :601-+
[27]   Towards convergence rate analysis of random forests for classification [J].
Gao W. ;
Xu F. ;
Zhou Z.-H. .
Artificial Intelligence, 2022, 313
[28]   Convergence analysis of corner cutting algorithms refining nets of functions [J].
Conti, Costanza ;
Dyn, Nira ;
Romani, Lucia .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 176 (176) :134-146
[29]   Distributed Algorithms for Composite Optimization: Unified Framework and Convergence Analysis [J].
Xu, Jinming ;
Tian, Ye ;
Sun, Ying ;
Scutari, Gesualdo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :3555-3570
[30]   Convergence Analysis of the Learning Algorithms for Multi-Valued Neurons [J].
Liang, Shuang ;
Xu, Dongpo ;
Liang, Jinling .
2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, :18-23