Creation of a Deep Convolutional Auto-Encoder in Caffe

被引:0
|
作者
Turchenko, Volodymyr [1 ,2 ]
Luczak, Artur [3 ]
机构
[1] NuraLogix Corp, 200-10 King St E, Toronto, ON M5C 1C3, Canada
[2] Univ Toronto, Ontario Inst Studies Educ, 45 Walmer Rd, Toronto, ON M5R 2X2, Canada
[3] Univ Lethbridge, Canadian Ctr Behav Neurosci, Dept Neurosci, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
关键词
deep convolutional auto-encoder; machine learning; neural networks; visualization; dimensionality reduction;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The development of a deep (stacked) convolutional auto-encoder in the Caffe deep learning framework is presented in this paper. We describe simple principles which we used to create this model in Caffe. The proposed model of convolutional auto-encoder does not have pooling/unpooling layers yet. The results of our experimental research show comparable accuracy of dimensionality reduction in comparison with a classic auto-encoder on the example of MNIST dataset.
引用
收藏
页码:651 / 659
页数:9
相关论文
共 50 条
  • [31] A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis
    Qian, Quan
    Qin, Yi
    Wang, Yi
    Liu, Fuqiang
    MEASUREMENT, 2021, 178
  • [32] A Convolutional Auto-encoder Method for Anomaly Detection on System Logs
    Cui, Yu
    Sun, Yiping
    Hu, Jinglu
    Sheng, Gehao
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3057 - 3062
  • [33] A Convolutional Auto-Encoder for Haplotype Assembly and Viral Quasispecies Reconstruction
    Ke, Ziqi
    Vikalo, Haris
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [34] DeePattern: Layout Pattern Generation with Transforming Convolutional Auto-Encoder
    Yang, Haoyu
    Pathak, Piyush
    Gennari, Frank
    Lai, Ya-Chieh
    Yu, Bei
    PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [35] Human Action Recognition based on Convolutional Neural Networks with a Convolutional Auto-Encoder
    Geng, Chi
    Song, JianXin
    PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 933 - 938
  • [36] Convolutional dynamic auto-encoder: a clustering method for semantic images
    Mohamed, Zahra
    Ksantini, Riadh
    Kaabi, Jihene
    Neural Computing and Applications, 2022, 34 (19) : 17087 - 17105
  • [37] Multimodal Emotion Recognition Method Based on Convolutional Auto-Encoder
    Jian Zhou
    Xianwei Wei
    Chunling Cheng
    Qidong Yang
    Qun Li
    International Journal of Computational Intelligence Systems, 2018, 12 (1) : 351 - 358
  • [38] Convolutional dynamic auto-encoder: a clustering method for semantic images
    Zahra Mohamed
    Riadh Ksantini
    Jihene Kaabi
    Neural Computing and Applications, 2022, 34 : 17087 - 17105
  • [39] Detail Injection-Based Convolutional Auto-Encoder for Pansharpening
    Li, Ming
    Li, Jingzhi
    Liu, Yuting
    Liu, Fan
    JOURNAL OF REMOTE SENSING, 2022, 2022
  • [40] Unsupervised deep estimation modeling for tomato plant image based on dense convolutional auto-encoder
    Zhou Y.
    Deng H.
    Xu T.
    Miao T.
    Wu Q.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (11): : 182 - 192