Creation of a Deep Convolutional Auto-Encoder in Caffe

被引:0
|
作者
Turchenko, Volodymyr [1 ,2 ]
Luczak, Artur [3 ]
机构
[1] NuraLogix Corp, 200-10 King St E, Toronto, ON M5C 1C3, Canada
[2] Univ Toronto, Ontario Inst Studies Educ, 45 Walmer Rd, Toronto, ON M5R 2X2, Canada
[3] Univ Lethbridge, Canadian Ctr Behav Neurosci, Dept Neurosci, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
关键词
deep convolutional auto-encoder; machine learning; neural networks; visualization; dimensionality reduction;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The development of a deep (stacked) convolutional auto-encoder in the Caffe deep learning framework is presented in this paper. We describe simple principles which we used to create this model in Caffe. The proposed model of convolutional auto-encoder does not have pooling/unpooling layers yet. The results of our experimental research show comparable accuracy of dimensionality reduction in comparison with a classic auto-encoder on the example of MNIST dataset.
引用
收藏
页码:651 / 659
页数:9
相关论文
共 50 条
  • [21] Image colorization using deep convolutional auto-encoder with multi-skip connections
    Jin, Xin
    Di, Yide
    Jiang, Qian
    Chu, Xing
    Duan, Qing
    Yao, Shaowen
    Zhou, Wei
    SOFT COMPUTING, 2023, 27 (06) : 3037 - 3052
  • [22] Online deep learning based on auto-encoder
    Zhang, Si-si
    Liu, Jian-wei
    Zuo, Xin
    Lu, Run-kun
    Lian, Si-ming
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5420 - 5439
  • [23] Deep clustering based on embedded auto-encoder
    Huang, Xuan
    Hu, Zhenlong
    Lin, Lin
    SOFT COMPUTING, 2023, 27 (02) : 1075 - 1090
  • [24] Online deep learning based on auto-encoder
    Si-si Zhang
    Jian-wei Liu
    Xin Zuo
    Run-kun Lu
    Si-ming Lian
    Applied Intelligence, 2021, 51 : 5420 - 5439
  • [25] Appliance Identification in NILM Applications by means of a Convolutional Auto-Encoder
    de Diego-Oton, Laura
    Hernandez, Alvaro
    Pizarro, Daniel
    Nieto, Ruben
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR LIVING ENVIRONMENT, METROLIVENV, 2023, : 202 - 207
  • [26] Convolutional dynamic auto-encoder: a clustering method for semantic images
    Mohamed, Zahra
    Ksantini, Riadh
    Kaabi, Jihene
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 17087 - 17105
  • [27] De-Convolutional Auto-Encoder for Enhancement of Fingerprint Samples
    Schuch, Patrick
    Schulz, Simon
    Busch, Christoph
    2016 SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2016,
  • [28] Dispersion compensation of Lamb waves based on a convolutional auto-encoder
    Zhang, Han
    Hua, Jiadong
    Tong, Tong
    Zhang, Tian
    Lin, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 198
  • [29] Anomaly detection method based on convolutional variational auto-encoder
    Yu X.
    Xu M.
    Wang Y.
    Wang S.
    Hu N.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (05): : 151 - 158
  • [30] Multimodal Emotion Recognition Method Based on Convolutional Auto-Encoder
    Zhou, Jian
    Wei, Xianwei
    Cheng, Chunling
    Yang, Qidong
    Li, Qun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (01) : 351 - 358