Creation of a Deep Convolutional Auto-Encoder in Caffe

被引:0
|
作者
Turchenko, Volodymyr [1 ,2 ]
Luczak, Artur [3 ]
机构
[1] NuraLogix Corp, 200-10 King St E, Toronto, ON M5C 1C3, Canada
[2] Univ Toronto, Ontario Inst Studies Educ, 45 Walmer Rd, Toronto, ON M5R 2X2, Canada
[3] Univ Lethbridge, Canadian Ctr Behav Neurosci, Dept Neurosci, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
关键词
deep convolutional auto-encoder; machine learning; neural networks; visualization; dimensionality reduction;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The development of a deep (stacked) convolutional auto-encoder in the Caffe deep learning framework is presented in this paper. We describe simple principles which we used to create this model in Caffe. The proposed model of convolutional auto-encoder does not have pooling/unpooling layers yet. The results of our experimental research show comparable accuracy of dimensionality reduction in comparison with a classic auto-encoder on the example of MNIST dataset.
引用
收藏
页码:651 / 659
页数:9
相关论文
共 50 条
  • [1] A DEEP CONVOLUTIONAL AUTO-ENCODER WITH EMBEDDED CLUSTERING
    Alqahtani, A.
    Xie, X.
    Deng, J.
    Jones, M. W.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 4058 - 4062
  • [2] Compressed Sensing via a Deep Convolutional Auto-encoder
    Wu, Hao
    Zheng, Ziyang
    Li, Yong
    Dai, Wenrui
    Xiong, Hongkai
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [3] An Ensemble Net of Convolutional Auto-Encoder and Graph Auto-Encoder for Auto-Diagnosis
    Li, Jianqiang
    Ji, Changping
    Yan, Guokai
    You, Linlin
    Chen, Jie
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (01) : 189 - 199
  • [4] An FPGA Implementation of a Convolutional Auto-Encoder
    Zhao, Wei
    Jia, Zuchen
    Wei, Xiaosong
    Wang, Hai
    APPLIED SCIENCES-BASEL, 2018, 8 (04):
  • [5] HRTF Representation with Convolutional Auto-encoder
    Chen, Wei
    Hu, Ruimin
    Wang, Xiaochen
    Li, Dengshi
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 605 - 616
  • [6] Target Classification Using Convolutional Deep Learning and Auto-Encoder Models
    Zaied, Sarra
    Toumi, Abdelmalek
    Khenchaf, Ali
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [7] Deep Feature Based on Convolutional Auto-Encoder for Compact Semantic Hashing
    Wang, Jun
    Zhou, Jian
    Li, Liangding
    Chi, Jiapeng
    Yang, Feiling
    Han, Dezhi
    2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019), 2019, 1229
  • [8] Image Inpainting Based on Improved Deep Convolutional Auto-encoder Network
    QIANG Zhenping
    HE Libo
    DAI Fei
    ZHANG Qinghui
    LI Junqiu
    ChineseJournalofElectronics, 2020, 29 (06) : 1074 - 1084
  • [9] Circular Convolutional Auto-Encoder for Channel Coding
    Ye, Hao
    Liang, Le
    Li, Geoffrey Ye
    2019 IEEE 20TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC 2019), 2019,
  • [10] Deep auto-encoder based clustering
    Song, Chunfeng
    Huang, Yongzhen
    Liu, Feng
    Wang, Zhenyu
    Wang, Liang
    INTELLIGENT DATA ANALYSIS, 2014, 18 : S65 - S76