Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel

被引:44
作者
Cubitt, Toby S. [1 ,6 ]
Chen, Jianxin [3 ,4 ,5 ]
Harrow, Aram W. [2 ,6 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
[2] Univ Washington, Dept Comp Sci Engn, Seattle, WA 98195 USA
[3] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Tsinghua Univ, Dept Comp Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[6] Univ Bristol, Dept Math, Bristol BS8 1TH, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Additivity violation; channel coding; communication channels; information rates; quantum theory; superactivation; zero-error capacity; INFORMATION;
D O I
10.1109/TIT.2011.2169109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The zero-error classical capacity of a quantum channel is the asymptotic rate at which it can be used to send classical bits perfectly so that they can be decoded with zero probability of error. We show that there exist pairs of quantum channels, neither of which individually have any zero-error capacity whatsoever (even if arbitrarily many uses of the channels are available), but such that access to even a single copy of both channels allows classical information to be sent perfectly reliably. In other words, we prove that the zero-error classical capacity can be superactivated. This result is the first example of superactivation of a classical capacity of a quantum channel.
引用
收藏
页码:8114 / 8126
页数:13
相关论文
共 27 条
[1]  
BEIGI S, 2007, ARXIV07092090QUANTPH
[2]   A completely entangled subspace of maximal dimension [J].
Bhat, B. V. Rajarama .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (02) :325-330
[3]   On the dimension of subspaces with bounded Schmidt rank [J].
Cubitt, Toby ;
Montanaro, Ashley ;
Winter, Andreas .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
[4]   Counterexamples to Additivity of Minimum Output p-Renyi Entropy for p Close to 0 [J].
Cubitt, Toby ;
Harrow, Aram W. ;
Leung, Debbie ;
Montanaro, Ashley ;
Winter, Andreas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (01) :281-290
[5]   The private classical capacity and quantum capacity of a quantum channel [J].
Devetak, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :44-55
[6]   Quantum-channel capacity of very noisy channels [J].
DiVincenzo, DP ;
Shor, PW ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (02) :830-839
[7]   Unextendible product bases, uncompletable product bases and bound entanglement [J].
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) :379-410
[8]  
Duan R., 2009, ARXIV09062527QUANTPH
[9]  
DUAN R, UNAMBIGUOUS ZE UNPUB
[10]   Entanglement between two uses of a noisy multipartite quantum channel enables perfect transmission of classical information [J].
Duan, Runyao ;
Shi, Yaoyun .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)