The Making of a Productivity Hotspot in the Coastal Ocean

被引:62
|
作者
Wingfield, Dana K. [1 ]
Hoyt Peckham, S. [2 ,3 ]
Foley, David G. [4 ,5 ]
Palacios, Daniel M. [4 ,5 ]
Lavaniegos, Bertha E. [6 ]
Durazo, Reginaldo [7 ]
Nichols, Wallace J. [8 ,9 ]
Croll, Donald A. [10 ]
Bograd, Steven J. [4 ]
机构
[1] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA
[2] Ocean Fdn, Grp Tortuguero AC, La Paz, Baja California, Mexico
[3] Duke Univ, Ctr Marine Conservat, Beaufort, NC USA
[4] NOAA Fisheries, Div Environm Res, SW Fisheries Sci Ctr, Pacific Grove, CA USA
[5] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA
[6] Ctr Invest Cient & Educ Super Ensenada, Dept Oceanog Biol, Ensenada, Baja California, Mexico
[7] Univ Autonoma Baja California, Fac Ciencias Marinas, Ensenada, Baja California, Mexico
[8] Calif Acad Sci, San Francisco, CA 94118 USA
[9] Ocean Revolut, Davenport, CA USA
[10] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA
来源
PLOS ONE | 2011年 / 6卷 / 11期
关键词
CRAB PLEURONCODES-PLANIPES; BAJA-CALIFORNIA; UPWELLING SHADOWS; PACIFIC-OCEAN; EXTINCTION; RETENTION; MOVEMENTS; DECAPODA; SITES;
D O I
10.1371/journal.pone.0027874
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predators. Methodology/Principal Findings: Here we integrate remotely sensed oceanography, ship surveys, and satellite telemetry to show how local geomorphology interacts with physical forcing to create a region with locally enhanced upwelling and an adjacent upwelling shadow that promotes retentive circulation, enhanced year-round primary production, and prey aggregation. These conditions provide an area within the upwelling shadow where physiologically optimal water temperatures can be found adjacent to a region of enhanced prey availability, resulting in a foraging hotspot for loggerhead sea turtles (Caretta caretta) off the Baja California peninsula, Mexico. Significance/Conclusions: We have identified the set of conditions that lead to a persistent top predator hotspot, which increases our understanding of how highly migratory species exploit productive regions of the ocean. These results will aid in the development of spatially and environmentally explicit management strategies for marine species of conservation concern.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Climate forcing multiplies biological productivity in the coastal Arctic Ocean
    Tremblay, J. -E.
    Belanger, S.
    Barber, D. G.
    Asplin, M.
    Martin, J.
    Darnis, G.
    Fortier, L.
    Gratton, Y.
    Link, H.
    Archambault, P.
    Sallon, A.
    Michel, C.
    Williams, W. J.
    Philippe, B.
    Gosselin, M.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [2] DATA MANAGEMENT FOR THE NUTRIENT ENHANCED COASTAL OCEAN PRODUCTIVITY PROGRAM
    HENDEE, JC
    ESTUARIES, 1994, 17 (04): : 900 - 903
  • [3] Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem
    Grecian, W. James
    Witt, Matthew J.
    Attrill, Martin J.
    Bearhop, Stuart
    Becker, Peter H.
    Egevang, Carsten
    Furness, Robert W.
    Godley, Brendan J.
    Gonzalez-Solis, Jacob
    Gremillet, David
    Kopp, Matthias
    Lescroel, Amelie
    Matthiopoulos, Jason
    Patrick, Samantha C.
    Peter, Hans-Ulrich
    Phillips, Richard A.
    Stenhouse, Iain J.
    Votier, Stephen C.
    BIOLOGY LETTERS, 2016, 12 (08)
  • [4] THE MAKING OF A HOTSPOT
    Boer, Jaco
    AUSTRALIAN PLANNER, 2005, 42 (01) : 16 - 19
  • [5] Climate change in the coastal ocean: shifts in pelagic productivity and regionally diverging dynamics of coastal ecosystems
    Navarrete, Sergio A.
    Barahona, Mario
    Weidberg, Nicolas
    Broitman, Bernardo R.
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 289 (1970)
  • [6] FISH PRODUCTIVITY OF THE COASTAL WATERS OF THE MAIN FISHING AREAS OF THE WORLD OCEAN
    MOISEEV, PA
    BIOLOGIYA MORYA-MARINE BIOLOGY, 1988, (01): : 52 - 58
  • [7] Population connectivity of an overexploited coastal fish, Argyrosomus coronus (Sciaenidae), in an ocean-warming hotspot
    Henriques, R.
    Potts, W. M.
    Santos, C. V.
    Sauer, W. H. H.
    Shaw, P. W.
    AFRICAN JOURNAL OF MARINE SCIENCE, 2018, 40 (01) : 13 - 24
  • [8] COMPOSITION, PRODUCTIVITY AND NUTRIENT CHEMISTRY OF A COASTAL OCEAN PLANKTONIC FOOD-WEB
    VERITY, PG
    YODER, JA
    BISHOP, SS
    NELSON, JR
    CRAVEN, DB
    BLANTON, JO
    ROBERTSON, CY
    TRONZO, CR
    CONTINENTAL SHELF RESEARCH, 1993, 13 (07) : 741 - 776
  • [9] Making sense of ocean sensing: The Gulf of Mexico Coastal Ocean Observing System links observations to applications
    Simoniello, Christina
    Jochens, Ann E.
    Howard, Matthew K.
    Swaykos, Joseph
    Levin, Douglas R.
    Stone, Debbi
    Kirkpatrick, Barbara
    Kobara, Shinichi
    SENSING TECHNOLOGIES FOR GLOBAL HEALTH, MILITARY MEDICINE, DISASTER RESPONSE, AND ENVIRONMENTAL MONITORING AND BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION VIII, 2011, 8029
  • [10] Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity
    Statham, Peter J.
    Skidmore, Mark
    Tranter, Martyn
    GLOBAL BIOGEOCHEMICAL CYCLES, 2008, 22 (03)