We consider homogenization of differential operators of the form -Sigma(m)(i,j=1) X-i(a(ij)(delta(1/epsilon)(xi)) X(j)u(epsilon)) = f, where {X-j}(j=1)(m) is a family of linearly independent vector fields in R-N that by commutation generate the Lie algebra of a Carnot group, a(ij)(xi) are periodic functions in the sense of the group, and delta(1/epsilon) are the dilations in the group. We establish Meyers type estimates for the horizontal gradients Xu = (X(1)u,..., X(m)u) of solutions to equations defined with general vector fields satisfying Hormander's condition, and use them to prove convergence of the horizontal gradients of correctors in L2+theta, theta > 0.
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Bal, Guillaume
Garnier, Josselin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, Lab Probabilites & Modeles Aleatoires, F-75251 Paris 5, France
Univ Paris 07, Lab Jacques Louis Lions, F-75251 Paris 5, FranceColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Garnier, Josselin
Motsch, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse 3, Lab MIP, F-31062 Toulouse 9, FranceColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Motsch, Sebastien
Perrier, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
Univ Bordeaux 1, Ctr Lasers Intenses & Applicat, F-33405 Talence, FranceColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA