Transferable Machine-Learning Model of the Electron Density

被引:193
|
作者
Grisafi, Andrea [1 ,3 ]
Fabrizio, Alberto [2 ,3 ]
Meyer, Benjamin [2 ,3 ]
Wilkins, David M. [1 ]
Corminboeuf, Clemence [2 ,3 ]
Ceriotti, Michele [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IMX, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Computat Mol Design, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
ACCURATE DIFFRACTION DATA; ATOM SCATTERING FACTORS; POPULATION ANALYSIS; DATA-BANK; CHARGE-DENSITIES; INTERACTION ENERGY; SMALL-MOLECULE; RESOLUTION; REFINEMENTS; PARAMETERS;
D O I
10.1021/acscentsci.8b00551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
  • [41] Developing a Machine-Learning Model to Predict Clash Resolution Options
    Harode, Ashit
    Thabet, Walid
    Gao, Xinghua
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2024, 38 (02)
  • [42] BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity
    Palazzesi, Ferruccio
    Hermann, Markus R.
    Grundl, Marc A.
    Pautsch, Alexander
    Seeliger, Daniel
    Tautermann, Christofer S.
    Weber, Alexander
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (06) : 2915 - 2923
  • [43] Machine-Learning Model Developed for Rate-of-Penetration Optimization
    Batruny, Peter
    Gomes, Dalila
    Robinson, Timothy S.
    JPT, Journal of Petroleum Technology, 2023, 75 (02): : 59 - 61
  • [44] Development and validation of a machine-learning model for prediction of shoulder dystocia
    Tsur, A.
    Batsry, L.
    Toussia-Cohen, S.
    Rosenstein, M. G.
    Barak, O.
    Brezinov, Y.
    Yoeli-Ullman, R.
    Sivan, E.
    Sirota, M.
    Druzin, M. L.
    Stevenson, D. K.
    Blumenfeld, Y. J.
    Aran, D.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2020, 56 (04) : 588 - 596
  • [45] Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters
    Stork, Conrad
    Wagner, Johannes
    Friedrich, Nils-Ole
    Kops, Christina de Bruyn
    Sicho, Martin
    Kirchmair, Johannes
    CHEMMEDCHEM, 2018, 13 (06) : 564 - 571
  • [46] A Machine-Learning Model Accurately Predicts Projected Blood Glucose
    Goldner, Daniel R.
    Osborn, Chandra Y.
    Sears, Lindsay E.
    Huddleston, Brian
    Dachis, Jeff
    DIABETES, 2018, 67
  • [47] A New Machine-Learning Model and Expanded Dataset for a Noninvasive BGM
    Klyve, Dominic
    Anderson, James H., Jr.
    Currie, Kaptain
    Bui, Connor
    Karim, Fazle
    Somers, Virend K.
    DIABETES, 2024, 73
  • [48] Machine-learning model makes predictions about network biology
    Theodoris, Christina V.
    Ellinor, Patrick T.
    NATURE, 2023,
  • [49] Machine-Learning Model Prediction of Ionic Liquids Melting Points
    Acar, Zafer
    Nguyen, Phu
    Lau, Kah Chun
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [50] Machine-learning micropattern manufacturing
    Wang, Si
    Shen, Ziao
    Shen, Zhenyu
    Dong, Yuanjun
    Li, Yanran
    Cao, Yuxin
    Zhang, Yanmei
    Guo, Shengshi
    Shuai, Jianwei
    Yang, Yun
    Lin, Changjian
    Chen, Xun
    Zhang, Xingcai
    Huang, Qiaoling
    NANO TODAY, 2021, 38