Transferable Machine-Learning Model of the Electron Density

被引:193
|
作者
Grisafi, Andrea [1 ,3 ]
Fabrizio, Alberto [2 ,3 ]
Meyer, Benjamin [2 ,3 ]
Wilkins, David M. [1 ]
Corminboeuf, Clemence [2 ,3 ]
Ceriotti, Michele [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IMX, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Computat Mol Design, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
ACCURATE DIFFRACTION DATA; ATOM SCATTERING FACTORS; POPULATION ANALYSIS; DATA-BANK; CHARGE-DENSITIES; INTERACTION ENERGY; SMALL-MOLECULE; RESOLUTION; REFINEMENTS; PARAMETERS;
D O I
10.1021/acscentsci.8b00551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
  • [31] Machine-learning correction to density-functional crystal structure optimization
    Robert Hussein
    Jonathan Schmidt
    Tomás Barros
    Miguel A. L. Marques
    Silvana Botti
    MRS Bulletin, 2022, 47 : 765 - 771
  • [32] A machine-learning-based electron density (MLED) model in the inner magnetosphere
    Zhou, QingHua
    Chen, YunXiang
    Xiao, FuLiang
    Zhang, Sai
    Liu, Si
    Yang, Chang
    He, YiHua
    Gao, ZhongLei
    EARTH AND PLANETARY PHYSICS, 2022, 6 (04) : 350 - 358
  • [33] A machine-learning-based electron density(MLED) model in the inner magnetosphere
    QingHua Zhou
    YunXiang Chen
    FuLiang Xiao
    Sai Zhang
    Si Liu
    Chang Yang
    YiHua He
    ZhongLei Gao
    EarthandPlanetaryPhysics, 2022, 6 (04) : 350 - 358
  • [34] Machine-learning approach for operating electron beam at KEK electron/positron injector linac
    Mitsuka, Gaku
    Kato, Shinnosuke
    Iida, Naoko
    Natsui, Takuya
    Satoh, Masanori
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2024, 27 (08)
  • [35] Machine-learning model for predicting oliguria in critically ill patients
    Yamao, Yasuo
    Oami, Takehiko
    Yamabe, Jun
    Takahashi, Nozomi
    Nakada, Taka-aki
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] Machine-learning model for predicting oliguria in critically ill patients
    Yasuo Yamao
    Takehiko Oami
    Jun Yamabe
    Nozomi Takahashi
    Taka-aki Nakada
    Scientific Reports, 14
  • [37] Inheritance Pattern Prediction of Retinal Dystrophies: A Machine-Learning Model
    Schlegel, Dana
    Cunningham, Edmond
    Zhang, Xinghai
    Abdulhak, Yaman
    DeOrio, Andrew
    Jayasundera, Thiran
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [38] Predictors of Diabetes First Diagnosed in Pregnancy: A Machine-Learning Model
    de Campos, Maria A.
    Oppermann, Maria Lucia R.
    Genro, Vanessa K.
    Leitao, Cristiane B.
    Hirakata, Vania N.
    Reichelt, Angela J.
    DIABETES, 2020, 69
  • [39] Controlling Network Traffic Microstructures for Machine-Learning Model Probing
    Clausen, Henry
    Flood, Robert
    Aspinall, David
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT I, 2021, 398 : 456 - 475
  • [40] A Machine-Learning Model for Lung Age Forecasting by Analyzing Exhalations
    Pifarre, Marc
    Tena, Alberto
    Claria, Francisco
    Solsona, Francesc
    Vilaplana, Jordi
    Benavides, Arnau
    Mas, Lluis
    Abella, Francesc
    SENSORS, 2022, 22 (03)