Transferable Machine-Learning Model of the Electron Density

被引:193
|
作者
Grisafi, Andrea [1 ,3 ]
Fabrizio, Alberto [2 ,3 ]
Meyer, Benjamin [2 ,3 ]
Wilkins, David M. [1 ]
Corminboeuf, Clemence [2 ,3 ]
Ceriotti, Michele [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IMX, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Computat Mol Design, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
ACCURATE DIFFRACTION DATA; ATOM SCATTERING FACTORS; POPULATION ANALYSIS; DATA-BANK; CHARGE-DENSITIES; INTERACTION ENERGY; SMALL-MOLECULE; RESOLUTION; REFINEMENTS; PARAMETERS;
D O I
10.1021/acscentsci.8b00551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
  • [21] An integrated machine-learning model to predict nucleosome architecture
    Sala, Alba
    Labrador, Mireia
    Buitrago, Diana
    De Jorge, Pau
    Battistini, Federica
    Heath, Isabelle Brun
    Orozco, Modesto
    NUCLEIC ACIDS RESEARCH, 2024, 52 (17) : 10132 - 10143
  • [22] Machine-learning wistfulness
    Davenport, Matt
    CHEMICAL & ENGINEERING NEWS, 2017, 95 (18) : 40 - 40
  • [23] Machine-Learning the Landscape
    He, Yang-Hui
    CALABI-YAU LANDSCAPE: FROM GEOMETRY, TO PHYSICS, TO MACHINE LEARNING, 2021, 2293 : 87 - 130
  • [24] Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table
    Andolina, Christopher M.
    Saidi, Wissam A.
    DIGITAL DISCOVERY, 2023, 2 (04): : 1070 - 1077
  • [25] Electron density is not spherical: the many applications of the transferable aspherical atom model
    Kulik, Marta
    Dominiak, Paulina M.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6237 - 6243
  • [26] Development of a machine-learning finite-range nonlocal density functional
    Chen, Zehua
    Yang, Weitao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments
    Salehi Hikouei, Iman
    Kim, S. Sonny
    Mishra, Deepak R.
    SENSORS, 2021, 21 (13)
  • [28] Machine-learning correction to density-functional crystal structure optimization
    Hussein, Robert
    Schmidt, Jonathan
    Barros, Tomas
    Marques, Miguel A. L.
    Botti, Silvana
    MRS BULLETIN, 2022, 47 (08) : 765 - 771
  • [29] Machine-Learning Coupled Cluster Properties through a Density Tensor Representation
    Peyton, Benjamin G.
    Briggs, Connor
    D'Cunha, Ruhee
    Margraf, Johannes T.
    Crawford, T. Daniel
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (23): : 4861 - 4871
  • [30] Adaptive energy reference for machine-learning models of the electronic density of states
    Bin How, Wei
    Chong, Sanggyu
    Grasselli, Federico
    Huguenin-Dumittan, Kevin K.
    Ceriotti, Michele
    PHYSICAL REVIEW MATERIALS, 2025, 9 (01):