Transferable Machine-Learning Model of the Electron Density

被引:207
作者
Grisafi, Andrea [1 ,3 ]
Fabrizio, Alberto [2 ,3 ]
Meyer, Benjamin [2 ,3 ]
Wilkins, David M. [1 ]
Corminboeuf, Clemence [2 ,3 ]
Ceriotti, Michele [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IMX, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Computat Mol Design, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
ACCURATE DIFFRACTION DATA; ATOM SCATTERING FACTORS; POPULATION ANALYSIS; DATA-BANK; CHARGE-DENSITIES; INTERACTION ENERGY; SMALL-MOLECULE; RESOLUTION; REFINEMENTS; PARAMETERS;
D O I
10.1021/acscentsci.8b00551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 71 条
[51]   Maximally localized generalized Wannier functions for composite energy bands [J].
Marzari, N ;
Vanderbilt, D .
PHYSICAL REVIEW B, 1997, 56 (20) :12847-12865
[52]   Using Quantum Mechanical Approaches to Study Biological Systems [J].
Merz, Kenneth M., Jr. .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (09) :2804-2811
[53]   Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability [J].
Meyer, Benjamin ;
Guillot, Benoit ;
Ruiz-Lopez, Manuel F. ;
Genoni, Alessandro .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (03) :1052-1067
[54]  
Meyer JC, 2011, NAT MATER, V10, P209, DOI [10.1038/nmat2941, 10.1038/NMAT2941]
[55]   Machine learning for the structure-energy-property landscapes of molecular crystals [J].
Musil, Felix ;
De, Sandip ;
Yang, Jack ;
Campbell, Joshua E. ;
Day, Graeme M. ;
Ceriotti, Michele .
CHEMICAL SCIENCE, 2018, 9 (05) :1289-1300
[56]   Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions [J].
Pastorczak, Ewa ;
Corminboeuf, Clemence .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (12)
[57]   Beyond Static Structures: Putting Forth REMD as a Tool to Solve Problems in Computational Organic Chemistry [J].
Petraglia, Riccardo ;
Nicolai, Adrien ;
Wodrich, Matthew D. ;
Ceriotti, Michele ;
Corminboeuf, Clemence .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (01) :83-92
[58]   A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules [J].
Pichon-Pesme, V ;
Jelsch, C ;
Guillot, B ;
Lecomte, C .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 :204-208
[59]   ON BUILDING A DATA-BANK OF TRANSFERABLE EXPERIMENTAL ELECTRON-DENSITY PARAMETERS - APPLICATION TO POLYPEPTIDES [J].
PICHONPESME, V ;
LECOMTE, C ;
LACHEKAR, H .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (16) :6242-6250
[60]   Nearsightedness of electronic matter [J].
Prodan, E ;
Kohn, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11635-11638