Transferable Machine-Learning Model of the Electron Density

被引:207
作者
Grisafi, Andrea [1 ,3 ]
Fabrizio, Alberto [2 ,3 ]
Meyer, Benjamin [2 ,3 ]
Wilkins, David M. [1 ]
Corminboeuf, Clemence [2 ,3 ]
Ceriotti, Michele [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IMX, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Computat Mol Design, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
ACCURATE DIFFRACTION DATA; ATOM SCATTERING FACTORS; POPULATION ANALYSIS; DATA-BANK; CHARGE-DENSITIES; INTERACTION ENERGY; SMALL-MOLECULE; RESOLUTION; REFINEMENTS; PARAMETERS;
D O I
10.1021/acscentsci.8b00551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 71 条
[1]  
[Anonymous], 2012, Modern Charge-Density Analysis
[2]  
[Anonymous], 1989, Density-functional theory of atoms and molecules
[3]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[4]   The Matter Simulation (R)evolution [J].
Aspuru-Guzik, Alan ;
Lindh, Roland ;
Reiher, Markus .
ACS CENTRAL SCIENCE, 2018, 4 (02) :144-152
[5]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[6]   Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases [J].
Bak, Joanna Maria ;
Domagala, Slawomir ;
Huebschle, Christian ;
Jelsch, Christian ;
Dittrich, Birger ;
Dominiak, Paulina Maria .
ACTA CRYSTALLOGRAPHICA SECTION A, 2011, 67 :141-153
[7]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[8]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[9]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[10]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403