Analytic factorization of Lie group representations

被引:6
|
作者
Gimperlein, Heiko [2 ]
Kroetz, Bernhard [1 ]
Lienau, Christoph [1 ]
机构
[1] Leibniz Univ Hannover, D-30167 Hannover, Germany
[2] Dept Math Sci, DK-2100 Copenhagen O, Denmark
关键词
Dixmier-Malliavin; Factorization; Analytic vectors; Lie group representation;
D O I
10.1016/j.jfa.2011.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every moderate growth representation (pi, E) of a real Lie group G on a Frechet space, we prove a factorization theorem of Dixmier-Malliavin type for the space of analytic vectors E(omega). There exists a natural algebra of superexponentially decreasing analytic functions A(G), such that E(omega) = Pi(A(G))E(omega). As a corollary we obtain that E(omega) coincides with the space of analytic vectors for the Laplace-Beltrami operator on G. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 681
页数:15
相关论文
共 50 条