Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model

被引:17
|
作者
Karrasch, C. [1 ,2 ,7 ,8 ]
Kennes, D. M. [3 ,4 ]
Heidrich-Meisner, F. [5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[5] Univ Munich, Dept Phys, D-80333 Munich, Germany
[6] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[8] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
关键词
DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICAL THEORY; CARBON NANOTUBES; IRREVERSIBLE PROCESSES; OPTICAL LATTICE; ULTRACOLD ATOMS; PRODUCT STATES; MOTT INSULATOR; XXZ CHAIN; TRANSPORT;
D O I
10.1103/PhysRevLett.117.116401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    潘峰
    戴连荣
    ScienceinChina,SerA., 2001, Ser.A.2001 (01) : 83 - 88
  • [32] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Feng Pan
    Lianrong Dai
    Science in China Series A: Mathematics, 2001, 44 : 83 - 88
  • [33] The One-Dimensional Bose-Fermi-Hubbard Model in the Limit of Fast Fermions
    Mering, Alexander
    Fleischhauer, Michael
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (09):
  • [34] Optical conductivity of the one-dimensional dimerized Hubbard model at quarter filling
    Benthien, H
    Jeckelmann, E
    EUROPEAN PHYSICAL JOURNAL B, 2005, 44 (03): : 287 - 297
  • [35] Optical conductivity of the one-dimensional dimerized Hubbard model at quarter filling
    H. Benthien
    E. Jeckelmann
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 44 : 287 - 297
  • [36] Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model
    Ren, Jun-Hang
    Ye, Ming-Yong
    Lin, Xiu-Min
    CHINESE PHYSICS B, 2018, 27 (07)
  • [37] NON-FERMI LIQUID BEHAVIOR OF A ONE-DIMENSIONAL HUBBARD-MODEL
    KANG, K
    MIN, BI
    SOLID STATE COMMUNICATIONS, 1994, 91 (05) : 403 - 406
  • [38] NON-FERMI-LIQUID EXPONENTS OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    SORELLA, S
    PAROLA, A
    PARRINELLO, M
    TOSATTI, E
    EUROPHYSICS LETTERS, 1990, 12 (08): : 721 - 726
  • [39] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Pan, F.
    Dai, L.
    Science in China, Series A: Mathematics, Physics, Astronomy, 2001, 44 (01): : 83 - 88
  • [40] Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension
    Yin, Xiao
    Radzihovsky, Leo
    PHYSICAL REVIEW A, 2016, 94 (06)