Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model

被引:17
|
作者
Karrasch, C. [1 ,2 ,7 ,8 ]
Kennes, D. M. [3 ,4 ]
Heidrich-Meisner, F. [5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[5] Univ Munich, Dept Phys, D-80333 Munich, Germany
[6] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[8] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
关键词
DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICAL THEORY; CARBON NANOTUBES; IRREVERSIBLE PROCESSES; OPTICAL LATTICE; ULTRACOLD ATOMS; PRODUCT STATES; MOTT INSULATOR; XXZ CHAIN; TRANSPORT;
D O I
10.1103/PhysRevLett.117.116401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Dispersive excitations in one-dimensional ionic Hubbard model
    Torbati, M. Hafez
    Drescher, Nils A.
    Uhrig, Goez S.
    PHYSICAL REVIEW B, 2014, 89 (24)
  • [22] Level statistics of the one-dimensional ionic Hubbard model
    De Marco, Jeannette
    Tolle, Luisa
    Halati, Catalin-Mihai
    Sheikhan, Ameneh
    Laeuchli, Andreas M.
    Kollath, Corinna
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [23] Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms
    Das, Purnendu
    Leeb, Valentin
    Knolle, Johannes
    Knap, Michael
    PHYSICAL REVIEW LETTERS, 2024, 132 (26)
  • [24] Open Fermi-Hubbard model: Landauer's versus master equation approaches
    Kolovsky, Andrey R.
    PHYSICAL REVIEW B, 2020, 102 (17)
  • [25] Phase diagram of the one-dimensional extended ionic Hubbard model
    Zhao Hong-Xia
    Zhao Hui
    Chen Yu-Guang
    Yan Yong-Hong
    ACTA PHYSICA SINICA, 2015, 64 (10)
  • [26] Spin-imbalance in a 2D Fermi-Hubbard system
    Brown, Peter T.
    Mitra, Debayan
    Guardado-Sanchez, Elmer
    Schauss, Peter
    Kondov, Stanimir S.
    Khatami, Ehsan
    Paiva, Thereza
    Trivedi, Nandini
    Huse, David A.
    Bakr, Waseem S.
    SCIENCE, 2017, 357 (6358) : 1385 - 1388
  • [27] Drag dynamics in one-dimensional Fermi systems
    Ozaki, Jun'ichi
    Tezuka, Masaki
    Kawakami, Norio
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [28] Dynamic properties of the one-dimensional Bose-Hubbard model
    Ejima, S.
    Fehske, H.
    Gebhard, F.
    EPL, 2011, 93 (03)
  • [29] Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach
    Ilievski, Enej
    De Nardis, Jacopo
    PHYSICAL REVIEW B, 2017, 96 (08)
  • [30] Quantum gas microscopy of an attractive Fermi-Hubbard system
    Mitra, Debayan
    Brown, Peter T.
    Guardado-Sanchez, Elmer
    Kondov, Stanimir S.
    Devakul, Trithep
    Huse, David A.
    Schauss, Peter
    Bakr, Waseem S.
    NATURE PHYSICS, 2018, 14 (02) : 173 - +