On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems

被引:5
|
作者
Djenina, Noureddine [1 ]
Ouannas, Adel [1 ,2 ]
Oussaeif, Taki-Eddine [1 ]
Grassi, Giuseppe [3 ]
Batiha, Iqbal M. [2 ,4 ]
Momani, Shaher [2 ,5 ]
Albadarneh, Ramzi B. [6 ]
机构
[1] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 20550, U Arab Emirates
[3] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[4] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 2600, Jordan
[5] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[6] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
关键词
the h-nabla fractional-order sum operator; incommensurate fractional-order difference systems; Z-transform method; stability analysis; (Q;
D O I
10.3390/fractalfract6030158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work aims to present a study on the stability analysis of linear and nonlinear incommensurate h-nabla fractional-order difference systems. Several theoretical results are inferred with the help of using some theoretical schemes, such as the Z-transform method, Cauchy-Hadamard theorem, Taylor development approach, final-value theorem and Banach fixed point theorem. These results are verified numerically via two illustrative numerical examples that show the stabilities of the solutions of systems at hand.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    CHINESE PHYSICS B, 2012, 21 (03)
  • [42] On the Stability of Fractional-Order Systems of Neutral Type
    Pakzad, Mohammad Ali
    Pakzad, Sara
    Nekoui, Mohammad Ali
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (05):
  • [43] On the stability of linear systems with fractional-order elements
    Radwan, A. G.
    Soliman, A. M.
    Elwakil, A. S.
    Sedeek, A.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2317 - 2328
  • [44] The FCC Stability Criterion for Fractional-Order Linear Time-Invariant Systems with Commensurate or Incommensurate Orders
    Dabiri, Arman
    Butcher, Eric A.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2839 - 2844
  • [45] External stability of fractional-order control systems
    曾庆山
    曹广益
    朱新坚
    Journal of Harbin Institute of Technology, 2006, (01) : 32 - 36
  • [46] On the robust stability of commensurate fractional-order systems
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (11): : 5559 - 5574
  • [47] Algebraic stability of impulsive fractional-order systems
    Wu, Ranchao
    Hei, Xindong
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (32) : 1 - 13
  • [48] Stability of fractional-order systems with Prabhakar derivatives
    Garrappa, Roberto
    Kaslik, Eva
    NONLINEAR DYNAMICS, 2020, 102 (01) : 567 - 578
  • [49] Robust Stability for Uncertain Fractional-order Systems
    Jiao Zhuang
    Zhong Yisheng
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 148 - 152
  • [50] On the Stability of Linear Fractional-Order Singular Systems
    Nosrati, Komeil
    Shafiee, Masoud
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 956 - 961