On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems

被引:5
|
作者
Djenina, Noureddine [1 ]
Ouannas, Adel [1 ,2 ]
Oussaeif, Taki-Eddine [1 ]
Grassi, Giuseppe [3 ]
Batiha, Iqbal M. [2 ,4 ]
Momani, Shaher [2 ,5 ]
Albadarneh, Ramzi B. [6 ]
机构
[1] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 20550, U Arab Emirates
[3] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[4] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 2600, Jordan
[5] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[6] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
关键词
the h-nabla fractional-order sum operator; incommensurate fractional-order difference systems; Z-transform method; stability analysis; (Q;
D O I
10.3390/fractalfract6030158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work aims to present a study on the stability analysis of linear and nonlinear incommensurate h-nabla fractional-order difference systems. Several theoretical results are inferred with the help of using some theoretical schemes, such as the Z-transform method, Cauchy-Hadamard theorem, Taylor development approach, final-value theorem and Banach fixed point theorem. These results are verified numerically via two illustrative numerical examples that show the stabilities of the solutions of systems at hand.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Wirtinger-based fractional summation inequality for stability analysis of nabla discrete fractional-order time-delay systems
    Wu, Xiang
    Yang, Xujun
    Liu, Da-Yan
    Li, Chuandong
    NONLINEAR DYNAMICS, 2024, 112 (19) : 17055 - 17068
  • [32] Stability Results for Two-Dimensional Systems of Fractional-Order Difference Equations
    Brandibur, Oana
    Kaslik, Eva
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    MATHEMATICS, 2020, 8 (10) : 1 - 16
  • [33] Lyapunov stability analysis for nonlinear nabla tempered fractional order systems
    Wei, Yiheng
    Chen, YangQuan
    Wei, Yingdong
    Zhao, Xuan
    ASIAN JOURNAL OF CONTROL, 2023, 25 (04) : 3057 - 3066
  • [34] Lyapunov theorem for stability analysis of nonlinear nabla fractional order systems
    Wei, Yiheng
    Zhao, Linlin
    Wei, Yidong
    Cao, Jinde
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [35] Liapunov functional and stability of linear nabla (q, h)-fractional difference equations
    Jia, Baoguo
    Chen, Siyuan
    Erbe, Lynn
    Peterson, Allan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (12) : 1974 - 1985
  • [36] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
    张若洵
    杨世平
    Chinese Physics B, 2012, (03) : 126 - 130
  • [37] LINEAR SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Atici, Ferhan M.
    Eloe, Paul W.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (02) : 353 - 370
  • [38] EXISTENCE AND STABILITY OF SOLUTIONS FOR NABLA FRACTIONAL DIFFERENCE SYSTEMS WITH ANTI-PERIODIC
    Jonnalagadda, Jagan mohan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (05): : 739 - 754
  • [39] Explicit Criteria for Stability of Two-Dimensional Fractional Nabla Difference Systems
    Jonnalagadda, Jagan Mohan
    MATHEMATICS AND COMPUTING (ICMC 2018), 2018, 253 : 305 - 314
  • [40] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    NEUROCOMPUTING, 2016, 173 : 606 - 614