On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems

被引:5
|
作者
Djenina, Noureddine [1 ]
Ouannas, Adel [1 ,2 ]
Oussaeif, Taki-Eddine [1 ]
Grassi, Giuseppe [3 ]
Batiha, Iqbal M. [2 ,4 ]
Momani, Shaher [2 ,5 ]
Albadarneh, Ramzi B. [6 ]
机构
[1] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman 20550, U Arab Emirates
[3] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[4] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 2600, Jordan
[5] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[6] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
关键词
the h-nabla fractional-order sum operator; incommensurate fractional-order difference systems; Z-transform method; stability analysis; (Q;
D O I
10.3390/fractalfract6030158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work aims to present a study on the stability analysis of linear and nonlinear incommensurate h-nabla fractional-order difference systems. Several theoretical results are inferred with the help of using some theoretical schemes, such as the Z-transform method, Cauchy-Hadamard theorem, Taylor development approach, final-value theorem and Banach fixed point theorem. These results are verified numerically via two illustrative numerical examples that show the stabilities of the solutions of systems at hand.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations
    Dassios, Ioannis K.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (01) : 49 - 64
  • [22] FINITE-TIME STABILITY IN MEAN FOR NABLA UNCERTAIN FRACTIONAL ORDER LINEAR DIFFERENCE SYSTEMS
    Lu, Qinyun
    Zhu, Yuanguo
    Li, Bo
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
  • [23] Asymptotic stability for 2 × 2 fractional nabla difference systems
    Jonnalagadda J.M.
    International Journal of Dynamics and Control, 2019, 7 (01) : 326 - 329
  • [24] Lyapunov Stability Theory for Nonlinear Nabla Fractional Order Systems
    Wei, Yiheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (10) : 3246 - 3250
  • [25] Stability analysis for a class of nabla (q, h)-fractional difference equations
    Liu, Xiang
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 664 - 687
  • [26] New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems
    Chen, Liping
    Xue, Min
    Lopes, Antonio M.
    Wu, Ranchao
    Zhang, Xiaohua
    Chen, Yangquan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (01) : 455 - 459
  • [27] MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 977 - 992
  • [28] Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems
    Shahvali, Milad
    Naghibi-Sistani, Mohammad-Bagher
    Modares, Hamidreza
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (02): : 481 - 486
  • [29] Robust stability criterion of fractional-order functions for interval fractional-order systems
    Gao, Zhe
    Liao, Xiaozhong
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01): : 60 - 67
  • [30] Robust stability analysis of incommensurate fractional-order systems with time-varying interval uncertainties
    Tavazoei, Mohammad
    Asemani, Mohammad Hassan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (18): : 13800 - 13815