Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization

被引:27
作者
Dick, Graham R. [1 ]
Komarova, Anastasia O. [1 ]
Luterbacher, Jeremy S. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Lab Sustainable & Catalyt Proc LPDC, Inst Chem Sci & Engn ISIC, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
LIGNOCELLULOSIC BIOMASS; KRAFT LIGNIN; CATALYTIC HYDROTREATMENT; ENZYMATIC-HYDROLYSIS; GAMMA-VALEROLACTONE; FRACTIONATION; HYDRODEOXYGENATION; DEPOLYMERIZATION; CONVERSION; CHEMICALS;
D O I
10.1039/d1gc02575a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Existing lignocellulosic biomass fractionation processes produce lignin with random, interunit C-C bonds that inhibit its depolymerization and constrain its use. Here, we exploit the aldehyde stabilization of lignin to tailor its structure, functionality, and resulting properties, expanding its potential uses. We use bifunctional aldehydes to install specific functionality in lignin and thereby control its physical properties. Rational selection of the aldehyde allows for the formation of acetal-stabilised lignins that are soluble in either polar or non-polar solvents such as water and toluene. Exploiting these novel solubility properties, the effect of solvent on lignin hydrogenolysis is elucidated through the hydrogenolysis of select lignins. Through this study, we notably demonstrate the hydrogenolysis of sodium glyoxylate stabilised lignin in water, opening new avenues for the development of green chemical processes.
引用
收藏
页码:1285 / 1293
页数:9
相关论文
共 45 条
[1]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[2]   Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin [J].
Amiri, Masoud Talebi ;
Dick, Graham R. ;
Questell-Santiago, Ydna M. ;
Luterbacher, Jeremy S. .
NATURE PROTOCOLS, 2019, 14 (03) :921-954
[3]   Establishing lignin structure-upgradeability relationships using quantitative 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy [J].
Amiri, Masoud Talebi ;
Bertella, Stefania ;
Questell-Santiago, Ydna M. ;
Luterbacher, Jeremy S. .
CHEMICAL SCIENCE, 2019, 10 (35) :8135-8142
[4]   Carbon dioxide utilization via carbonate-promoted C-H carboxylation [J].
Banerjee, Aanindeeta ;
Dick, Graham R. ;
Yoshino, Tatsuhiko ;
Kanan, Matthew W. .
NATURE, 2016, 531 (7593) :215-+
[5]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[6]   CHEMISTRY Connecting Biomass and Petroleum Processing with a Chemical Bridge [J].
Bozell, Joseph J. .
SCIENCE, 2010, 329 (5991) :522-523
[7]   Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications [J].
Chan, Jou C. ;
Paice, Michael ;
Zhang, Xiao .
CHEMCATCHEM, 2020, 12 (02) :401-425
[8]   Aldehydes-Aided Lignin-First Deconstruction Strategy for Facilitating Lignin Monomers and Fermentable Glucose Production from Poplar Wood [J].
Chen, Tian-Ying ;
Ma, Cheng-Ye ;
Min, Dou-Yong ;
Liu, Chuan-Fu ;
Sun, Shao-Ni ;
Cao, Xue-Fei ;
Wen, Jia-Long ;
Yuan, Tong-Qi ;
Sun, Run-Cang .
ENERGIES, 2020, 13 (05)
[9]   Oil, Domestic Politics, and International Conflict [J].
Colgan, Jeff D. .
ENERGY RESEARCH & SOCIAL SCIENCE, 2014, 1 :198-205
[10]   Chemical routes for the transformation of biomass into chemicals [J].
Corma, Avelino ;
Iborra, Sara ;
Velty, Alexandra .
CHEMICAL REVIEWS, 2007, 107 (06) :2411-2502