Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces

被引:27
作者
Guo, Zihua [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
Dispersion generalized Benjamin-Ono equation; Local well-posedness; INITIAL-VALUE PROBLEM; ILL-POSEDNESS; KDV;
D O I
10.1016/j.jde.2011.10.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation partial derivative(t)u + vertical bar partial derivative(x)vertical bar(1+alpha)partial derivative(x)u + uu(x) = 0, u(x,0) = u(0)(x), is locally well-posed in the Sobolev spaces H-s for s > 1 - alpha if 0 <= alpha <= 1. The new ingredient is that we generalize the methods of Ionescu, Kenig and Tataru (2008) [13] to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet. Saut and Tzvetkov (2001) [21]. Moreover, as a bi-product we prove that if 0 < alpha <= 1 the corresponding modified equation (with the nonlinearity +/- uuu(x)) is locally well-posed in H-s for s >= 1/2 - alpha/4. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2053 / 2084
页数:32
相关论文
共 50 条
[41]   LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION [J].
Wang, Hongwei .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (01) :199-208
[42]   LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION [J].
王宏伟 .
Acta Mathematica Scientia, 2014, 34 (01) :199-208
[43]   Quadratic dispersive generalized Benjamin-Ono equation [J].
Wang, Yuzhao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) :844-856
[44]   SHARP LOCAL WELL-POSEDNESS AND NONLINEAR SMOOTHING FOR DISPERSIVE EQUATIONS THROUGH [J].
Correia, Simao ;
Oliveira, Filipe ;
Silva, Jorge drumond .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) :5604-5633
[45]   Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces [J].
Khai, D. Q. ;
Tri, N. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :130-145
[46]   Long time well-posedness of Prandtl equations in Sobolev space [J].
Xu, Chao-Jiang ;
Zhang, Xu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8749-8803
[47]   Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces [J].
Qian Zhang ;
Yehua Zhang .
Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 :53-70
[48]   LOCAL SOLUTIONS IN SOBOLEV SPACES AND UNCONDITIONAL WELL- POSEDNESS FOR THE GENERALIZED BOUSSINESQ EQUATION [J].
Farah, Luiz Gustavo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) :1521-1539
[49]   Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain [J].
Flores, C. .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (03)
[50]   On the local well-posedness of the 1D Green-Naghdi system on Sobolev spaces [J].
Inci, Hasan .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (01) :52-62