Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces

被引:27
作者
Guo, Zihua [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
Dispersion generalized Benjamin-Ono equation; Local well-posedness; INITIAL-VALUE PROBLEM; ILL-POSEDNESS; KDV;
D O I
10.1016/j.jde.2011.10.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation partial derivative(t)u + vertical bar partial derivative(x)vertical bar(1+alpha)partial derivative(x)u + uu(x) = 0, u(x,0) = u(0)(x), is locally well-posed in the Sobolev spaces H-s for s > 1 - alpha if 0 <= alpha <= 1. The new ingredient is that we generalize the methods of Ionescu, Kenig and Tataru (2008) [13] to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet. Saut and Tzvetkov (2001) [21]. Moreover, as a bi-product we prove that if 0 < alpha <= 1 the corresponding modified equation (with the nonlinearity +/- uuu(x)) is locally well-posed in H-s for s >= 1/2 - alpha/4. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2053 / 2084
页数:32
相关论文
共 50 条
[21]   Local well-posedness for the dispersion generalized periodic KdV equation [J].
Li, Junfeng ;
Shi, Shaoguang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :706-718
[22]   Well-posed solutions of the third order Benjamin-Ono equation in weighted Sobolev spaces [J].
Feng, XS .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1997, 4 (04) :525-537
[23]   Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation [J].
Mingjuan Chen ;
Guo, Boling ;
Han, Lijia .
APPLICABLE ANALYSIS, 2021, 100 (04) :804-818
[24]   WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACES [J].
Alexandre, R. ;
Wang, Y. -G. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (03) :745-784
[25]   Sharp well-posedness results of the Benjamin-Ono equation in Hs (T, R) and qualitative properties of its solutions [J].
Gerard, Patrick ;
Kappeler, Thomas ;
Topalov, Peter .
ACTA MATHEMATICA, 2023, 231 (01) :31-88
[26]   Local well-posedness of the Ostrovsky, Stepanyams and Tsimring equation in Sobolev spaces of negative indices [J].
Zhao, Xiangqing ;
Cui, Shangbin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3483-3501
[27]   Local well-posedness in weighted Sobolev spaces for nonlinear dispersive equations with applications to dispersive blow up [J].
Munoz, Alexander ;
Pastor, Ademir .
MATHEMATISCHE ANNALEN, 2023, 386 (1-2) :207-246
[28]   Local well-posedness for periodic Benjamin equation with small initial data [J].
Shi, Shaoguang ;
Li, Junfeng .
BOUNDARY VALUE PROBLEMS, 2015, :1-15
[29]   Local well-posedness and ill-posedness for the fractal Burgers equation in homogeneous Sobolev spaces [J].
Xu, Xiaojing .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) :359-370
[30]   Local well-posedness in critical spaces for the compressible MHD equations [J].
Bian, Dongfen ;
Yuan, Baoquan .
APPLICABLE ANALYSIS, 2016, 95 (02) :239-269