Wetland plants selection and electrode optimization for constructed wetland-microbial fuel cell treatment of Cr(VI)-containing wastewater

被引:32
作者
Liu, Shentan [1 ,2 ]
Lu, Feifan [1 ]
Qiu, Dengfei [1 ]
Feng, Xiaojuan [3 ]
机构
[1] Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Shaanxi, Peoples R China
[2] Lund Univ, Fac Engn, Dept Chem, Biotechnol, SE-22100 Lund, Sweden
[3] Changan Univ, Sch Water & Environm, Xian 710054, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Wetland plant; Cr-containing wastewater; Constructed wetland; Microbial fuel cell; Electrode distance; BIOELECTRICITY GENERATION; CR(VI) REDUCTION; CHROMIUM; PERFORMANCE; VANADIUM; POWER;
D O I
10.1016/j.jwpe.2022.103040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study evaluated the effects of electrode arrangement and aquatic plant selection on the performance of single-chamber constructed wetland-microbial fuel cell (CW-MFC) in the treatment of wastewater containing Cr (VI). The CW-MFC with the electrode distance of 10 cm obtained the highest Cr(VI) removal efficiency of 98.8 % at 9 h and the largest power density of 37.8 mW/m2. Short electrode distance would destroy anodic anoxic atmosphere by oxygen secretion of plant roots, while large electrode distance would increase the internal resistance of the system. In the three sets of CW-MFCs with different cathode areas of 25 cm2, 75 cm2 and 100 cm2, the system with 75 cm2 cathode area achieved the highest maximum power density of 39.9 mW/m2 and corresponding Cr(VI) removal efficiency of 90.9 %. Cr(VI) removal by the CW-MFC conformed to first-order kinetics, and the main Cr(VI) removal mechanisms involved cathodic reduction of Cr(VI) to Cr(III), Cr(III) deposition and plant uptake. High-throughput analysis indicates that Lactococcus and Streptococcus were key electroactive bacteria for bioelectricity generation, while Rhodobacter and Hydrogenophaga were responsible for cathodic Cr(VI) reduction. To select optimal wetland plant with the characteristics of both high Cr enrichment capacity and high bioenergy output performance, six CW-MFCs with different plant species were established. Scirpus Validus CW-MFC exhibited better comprehensive performance with maximum power density of 40.6 mW/ m2 and Cr(VI) removal rate constant of 0.346 h1. For ensuring high electricity yield and efficient Cr(VI) removal, Scirpus validus can be selected as the optimal aquatic plant of the CW-MFC.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Removal and reduction mechanism of Cr (VI) in Leersia hexandra Swartz constructed wetland-microbial fuel cell coupling system
    Shi, Yucui
    Liu, Qing
    Wu, Guowei
    Zhao, Shasha
    Li, Yongwei
    You, Shaohong
    Huang, Guofu
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 277
  • [32] Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential
    Htet, Hsu Htet
    Dolphen, Rujira
    Jirasereeamornkul, Kamon
    Thiravetyan, Paitip
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (42) : 96163 - 96180
  • [33] Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell
    Wang, Junfeng
    Song, Xinshan
    Wang, Yuhui
    Abayneh, Befkadu
    Ding, Yi
    Yan, Denghua
    Bai, Junhong
    BIORESOURCE TECHNOLOGY, 2016, 221 : 697 - 702
  • [34] Constructed Wetland Coupled Microbial Fuel Cell: A Clean Technology for Sustainable Treatment of Wastewater and Bioelectricity Generation
    Kesarwani, Shiwangi
    Panwar, Diksha
    Mal, Joyabrata
    Pradhan, Nirakar
    Rani, Radha
    FERMENTATION-BASEL, 2023, 9 (01):
  • [35] Effects of Influent Organic Loading Rates and Electrode Locations on the Electrogenesis Capacity of Constructed Wetland-Microbial Fuel Cell Systems
    Xu, Dan
    Xiao, En-Rong
    Xu, Peng
    Zhou, Yin
    Zhou, Qiao-Hong
    Xu, Dong
    Wu, Zhen-Bin
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (02) : 435 - 441
  • [36] Seasonal variations of pollutants removal and microbial activity in integrated constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    WATER REUSE, 2021, 11 (02) : 312 - 328
  • [37] Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis
    Ji, Bin
    Zhao, Yaqian
    Vymazal, Jan
    Mander, Ulo
    Lust, Rauno
    Tang, Cheng
    CHEMOSPHERE, 2021, 262
  • [38] Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery
    Teoh, Tean-Peng
    Koo, Chong-Jing
    Ho, Li-Ngee
    Wong, Yee-Shian
    Lutpi, Nabilah Aminah
    Tan, Sing-Mei
    Yap, Kea-Lee
    Ong, Soon-An
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (21) : 59877 - 59890
  • [39] Effectiveness of rice husk in the removal of methyl orange dye in Constructed Wetland-Microbial Fuel Cell
    Sonu, Kumar
    Sogani, Monika
    Syed, Zainab
    Rajvanshi, Jayana
    Sengupta, Nishan
    BIORESOURCE TECHNOLOGY REPORTS, 2022, 20
  • [40] Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation
    Ren, Baiming
    Wang, Tongyue
    Zhao, Yaqian
    CHEMOSPHERE, 2021, 268