The linear-affine functional equation and group actions

被引:0
|
作者
Fripertinger, H [1 ]
Reich, L [1 ]
Schwaiger, J [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2004年 / 64卷 / 1-2期
关键词
linear-affine functional equation; group actions; semigroup actions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate generalizations of the linear-affine functional equation u(rx) = alpha(r)u(x) + beta(r) usually studied for r, x is an element of R->0 or r, x is an element of R-greater than or equal to1, by introducing a group action of a group R on a set X on the left hand side, and by studying actions of affine or arbitrary (semi) groups on the right-hand side of this equation.
引用
收藏
页码:209 / 235
页数:27
相关论文
共 50 条
  • [21] Reconstructing under group actions
    Radcliffe, A. J.
    Scott, A. D.
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 399 - 419
  • [22] Group actions on Jacobian varieties
    Rojas, Anita M.
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (02) : 397 - 420
  • [23] Chaotic behavior of group actions
    Wang, Zhaolong
    Zhang, Guohua
    DYNAMICS AND NUMBERS, 2016, 669 : 299 - 315
  • [24] Reconstructing under Group Actions
    A.J. Radcliffe
    A.D. Scott
    Graphs and Combinatorics, 2006, 22 : 399 - 419
  • [25] Rationality of some projective linear actions
    Ahmad, H
    Hajja, M
    Kang, MC
    JOURNAL OF ALGEBRA, 2000, 228 (02) : 643 - 658
  • [26] On Baire measurable colorings of group actions
    Bernshteyn, Anton
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (03) : 818 - 845
  • [27] GROUP ACTIONS, DIVISORS, AND PLANE CURVES
    Bonifant, Araceli
    Milnor, John
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 171 - 267
  • [28] Symmetric group actions on Jacobian varieties
    Carocca, Angel
    Rodriguez, Rubi E.
    Rojas, Anita M.
    RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES, 2014, 629 : 43 - 57
  • [29] Updatable Encryption from Group Actions
    Leroux, Antonin
    Romeas, Maxime
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2024, PT II, 2024, 14772 : 20 - 53
  • [30] Group algebra units and tree actions
    Wiechecki, Lukasz
    JOURNAL OF ALGEBRA, 2007, 311 (02) : 781 - 799