High Energy and Thermal Neutron Sensitivity of Google Tensor Processing Units

被引:26
作者
Rech Junior, Rubens Luiz [1 ]
Malde, Sujit [2 ]
Cazzaniga, Carlo [2 ]
Kastriotou, Maria [2 ]
Letiche, Manon [3 ]
Frost, Christopher [2 ]
Rech, Paolo [1 ,4 ,5 ]
机构
[1] Univ Fed Rio Grande Do Sul, Inst Informat, BR-91509900 Porto Alegre, RS, Brazil
[2] Sci & Technol Facil Council STFC, UK Res Innovat UKRI, ISIS Facil, Swindon SN2 1SZ, Wilts, England
[3] Inst Laue Langevin, Thermal & Epithermal Neutron Irradiat Stn TENIS, F-38000 Grenoble, France
[4] Politecn Torino, Dept Control & Comp Engn DAUIN, I-10129 Turin, Italy
[5] Univ Trento, Dipartimento Ingn Ind DII, I-38123 Trento, Italy
关键词
Neutrons; Image edge detection; Reliability; Convolutional neural networks; Performance evaluation; Error analysis; Software; AI; convolutional neural network (CNN); embedded applications; neutron experiment; reliability; tensor processing units (TPUs); IMPACT; RELIABILITY;
D O I
10.1109/TNS.2022.3142092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we investigate the reliability of Google's coral tensor processing units (TPUs) to both high-energy atmospheric neutrons (at ChipIR) and thermal neutrons from a pulsed source [at equipment materials and mechanics analyzer (EMMA)] and from a reactor [at Thermal and Epithermal Neutron Irradiation Station (TENIS)]. We report data obtained with an overall fluence of 3.41 x 10(12) n/cm(2) for atmospheric neutrons (equivalent to more than 30 million years of natural irradiation) and of 7.55 x 10(12) n/cm(2) for thermal neutrons. We evaluate the behavior of TPUs executing elementary operations with increasing input sizes (standard convolutions or depthwise convolutions) as well as eight convolutional neural networks (CNNs) configurations (single-shot multibox detection (SSD) MobileNet v2 and SSD MobileDet, trained with COCO dataset, and Inception v4 and ResNet-50, with ILSVRC2012 dataset). We found that, despite the high error rate, most neutron-induced errors only slightly modify the convolution output and do not change the detection or classification of CNNs. By reporting details about the error model, we provide valuable information on how to design the CNNs to avoid neutron-induced events to lead to misdetections or classifications.
引用
收藏
页码:567 / 575
页数:9
相关论文
共 32 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Impact of Tensor Cores and Mixed Precision on the Reliability of Matrix Multiplication in GPUs
    Basso, Pedro Martins
    dos Santos, Fernando Fernandes
    Rech, Paolo
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (07) : 1560 - 1565
  • [3] Beaucour J., 2015, 2015 15th European Conference on Radiation and its Effects on Components and Systems (RADECS), DOI 10.1109/RADECS.2015.7365616
  • [4] Evaluating and Mitigating Neutrons Effects on COTS EdgeAI Accelerators
    Blower, Sebastian
    Rech, Paolo
    Cazzaniga, Carlo
    Kastriotou, Maria
    Frost, Christopher D.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 1719 - 1726
  • [5] Bosio A, 2019, 2019 20TH IEEE LATIN AMERICAN TEST SYMPOSIUM (LATS), DOI 10.1109/latw.2019.8704548
  • [6] The Impact of Proton-Induced Single Events on Image Classification in a Neuromorphic Computing Architecture
    Brewer, Rachel M.
    Reed, Robert A.
    Moran, Steven L.
    Cox, Jonathan
    Sierawski, Brian D.
    McCurdy, Michael W.
    Zhang, En Xia
    Iyer, Subramanian S.
    Schrimpf, Ronald D.
    Alles, Michael L.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) : 108 - 115
  • [7] Dosimetry of Thermal Neutron Beamlines at a Pulsed Spallation Source for Application to the Irradiation of Microelectronics
    Cazzaniga, Carlo
    Raspino, Davide
    Sykora, G. Jeff
    Frost, Christopher D.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (05) : 921 - 927
  • [8] Progress of the Scientific Commissioning of a fast neutron beamline for Chip Irradiation
    Cazzaniga, Carlo
    Frost, Christopher D.
    [J]. 22ND MEETING OF THE INTERNATIONAL COLLABORATION ON ADVANCED NEUTRON SOURCES (ICANS XXII), 2018, 1021
  • [9] Measurement of the neutron flux at spallation sources using multi-foil activation
    Chiesa, Davide
    Nastasi, Massimiliano
    Cazzaniga, Carlo
    Rebai, Marica
    Arcidiacono, Laura
    Previtali, Ezio
    Gorini, Giuseppe
    Frost, Christopher D.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 902 : 14 - 24
  • [10] Analyzing and Increasing the Reliability of Convolutional Neural Networks on GPUs
    dos Santos, Fernando Fernandes
    Pimenta, Pedro Foletto
    Lunardi, Caio
    Draghetti, Lucas
    Carro, Luigi
    Kaeli, David
    Rech, Paolo
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2019, 68 (02) : 663 - 677