Conductive mode imaging of thermistor grain boundaries

被引:7
作者
Seaton, J
Leach, C
机构
[1] Univ Manchester, Manchester Mat Sci Ctr, Manchester M1 7HS, Lancs, England
[2] UMIST, Manchester M1 7HS, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
BaTiO3; conductive mode; electron microscopy; grain boundaries; thermistor;
D O I
10.1016/S0955-2219(03)00587-9
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
PTC thermistors undergo a rapid increase in grain boundary resistivity, covering several orders of magnitude, at temperatures just above the Curie temperature, T-C, which is associated with a ferroelectric to paraelectric phase transformation. In this study, hot-stage conductive mode scanning electron microscopy has been used to investigate the characteristics of individual thermistor grain boundaries over a range of temperatures around T-C. Using the remote electron beam induced current (REBIC) configuration, imaging has revealed EBIC contrast consistent with the presence of negatively charged electrostatic grain boundary barriers for the first time in a commercial thermistor. Not all grain boundaries within the thermistor were found to be EBIC active and the EBIC contrast was only observed at temperatures above T-C. EBSP analysis of grain boundary crystallography indicated that the EBIC active grain boundaries were predominantly high angle. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1191 / 1194
页数:4
相关论文
共 50 条
[31]   The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates [J].
Liu, Qian ;
Fang, Leiming ;
Xiong, Zhengwei ;
Yang, Jia ;
Tan, Ye ;
Liu, Yi ;
Zhang, Youjun ;
Tan, Qing ;
Hao, Chenchun ;
Cao, Linhong ;
Li, Jun ;
Gao, Zhipeng .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 822
[32]   Twin interaction with E 11 tilt grain boundaries in BCC Fe : Formation of new grain boundaries [J].
Sainath, G. ;
Nagesha, A. .
COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
[33]   Atomistic Simulations of Grain Boundaries in CdTe [J].
Sen, Fatih G. ;
Buurma, Christopher ;
Paulauskas, Tadas ;
Sun, Ce ;
Kim, Moon ;
Sivananthan, Sivalingam ;
Klie, Robert F. ;
Chan, Maria K. Y. .
2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
[34]   Interfaces and grain boundaries of lamellar phases [J].
Villain-Guillot, S ;
Netz, RR ;
Andelman, D ;
Schick, M .
PHYSICA A, 1998, 249 (1-4) :285-292
[35]   Bismuth segregation at copper grain boundaries [J].
Alber, U ;
Müllejans, H ;
Rühle, M .
ACTA MATERIALIA, 1999, 47 (15-16) :4047-4060
[36]   Electronic properties of graphene grain boundaries [J].
Ayuela, A. ;
Jaskolski, W. ;
Santos, H. ;
Chico, Leonor .
NEW JOURNAL OF PHYSICS, 2014, 16
[37]   Heat Transport at Silicon Grain Boundaries [J].
Isotta, Eleonora ;
Jiang, Shizhou ;
Bueno-Villoro, Ruben ;
Nagahiro, Ryohei ;
Maeda, Kosuke ;
Mattlat, Dominique Alexander ;
Odufisan, Alesanmi R. ;
Zevalkink, Alexandra ;
Shiomi, Junichiro ;
Zhang, Siyuan ;
Scheu, Christina ;
Snyder, G. Jeffrey ;
Balogun, Oluwaseyi .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
[38]   Layer topology of smectic grain boundaries [J].
Wittmann, Rene .
LIQUID CRYSTALS, 2024, 51 (13-14) :2182-2188
[39]   On the structure of grain/interphase boundaries and interfaces [J].
Padmanabhan, K. Anantha ;
Gleiter, Herbert .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 :1603-1615
[40]   Nanohardness of copper in the vicinity of grain boundaries [J].
Soifer, YM ;
Verdyan, A ;
Kazakevich, M ;
Rabkin, E .
SCRIPTA MATERIALIA, 2002, 47 (12) :799-804