K-function;
marked point process;
spatial point process;
D O I:
10.1016/j.jspi.2007.09.008
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper discusses a new perspective in fitting spatial point process models. Specifically the spatial point process of interest is treated as a marked point process where at each observed event x a stochastic process M(x; t), 0 < t < r, is defined. Each mark process M(x; t) is compared with its expected value, say F(t; theta), to produce a discrepancy measure at x, where theta is a set of unknown parameters. All individual discrepancy measures are combined to define an overall measure which will then be minimized to estimate the unknown parameters. The proposed approach can be easily applied to data with sample size commonly encountered in practice. Simulations and an application to a real data example demonstrate the efficacy of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
机构:
Politecn Milan, Dipartimento Matemat, MOX Modellist & Calcolo Sci, Via Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, MOX Modellist & Calcolo Sci, Via Bonardi 9, I-20133 Milan, Italy
Mancini, Luca
Paganoni, Anna Maria
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, MOX Modellist & Calcolo Sci, Via Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, MOX Modellist & Calcolo Sci, Via Bonardi 9, I-20133 Milan, Italy
机构:
Kobe Univ, Grad Sch Human Dev & Environm, Kobe, Hyogo 657, JapanUniv Tokyo, Grad Sch Math Sci, Japan Sci & Technol Agcy, Meguro Ku, Tokyo 1538914, Japan
Sakamoto, Yuji
Yoshida, Nakahiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Japan Sci & Technol Agcy, Meguro Ku, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Japan Sci & Technol Agcy, Meguro Ku, Tokyo 1538914, Japan