Effect of Butyric Anhydride Modification on Properties of Wood-polylactic Acid 3D-printed Composites

被引:8
作者
Narlioglu, Nasir [1 ]
机构
[1] Izmir Katip Celebi Univ, Fac Forestry, Dept Forest Ind Engn, Izmir, Turkey
关键词
Wood modification; Butyric anhydride; Polylactic acid; 3D-printed composite; CORSICAN PINE SAPWOOD; CHEMICAL-MODIFICATION; SURFACE-TREATMENTS; POLY(LACTIC ACID); BIOCOMPOSITES; PLA; ACETYLATION; FIBERS;
D O I
10.15376/biores.17.1.132-143
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Scotch pine wood flour was modified with butyric anhydride to determine the effect of wood modification on the properties of 3D-printed composites. The 3D printer filaments were obtained by mixing wood flour and polylactic acid (PLA) with a twin-screw extruder. The composites were printed via a 3D printer from the obtained filaments. The mechanical, thermal, and morphological properties of the composites were investigated. According to the mechanical test results, the tensile strength values of the modified wood flour (MWF)-added composites were higher than the unmodified wood flour (UMWF)-added composites. It was also observed that the flexural strength and flexural modulus of MWF-added composites decreased compared to the UMWF-added composites. According to the investigation of the thermal properties of the composites, the thermal degradation temperature value of the 20% MWF-added PLA composite was higher than other composites. Therefore, through the investigation of breaking surfaces of the composites using scanning electron microscopy, it was observed that the interface bonding between PLA polymer matrix and wood flour was improved by modification.
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
  • [1] Comparison of Mechanical Properties of 3D-Printed and Compression-Molded Wood-Polylactic Acid (PLA) Composites
    Narlioglu, Nasir
    BIORESOURCES, 2022, 17 (02) : 3291 - 3302
  • [2] Numerical Modeling Based on Finite Element Analysis of 3D-Printed Wood-Polylactic Acid Composites: A Comparison with Experimental Data
    Ezzaraa, Ismail
    Ayrilmis, Nadir
    Abouelmajd, Mohamed
    Kuzman, Manja Kitek
    Bahlaoui, Ahmed
    Arroub, Ismail
    Bengourram, Jamaa
    Lagache, Manuel
    Belhouideg, Soufiane
    FORESTS, 2023, 14 (01):
  • [3] The Mechanical Properties and Degradation Behavior of 3D-Printed Cellulose Nanofiber/Polylactic Acid Composites
    Zhang, Zhongsen
    Cao, Bingyan
    Jiang, Ning
    MATERIALS, 2023, 16 (18)
  • [4] Mechanical and Thermal Properties of 3D-Printed Biocomposites of Polylactic Acid and Thermally Modified Wood Flour with Silver Nanoparticles
    Yurttas, Elif
    Ayrilmis, Nadir
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (12)
  • [5] Printability and Properties of 3D-printed Poplar Fiber/Polylactic Acid Biocomposite
    Yang, Zhaozhe
    Feng, Xinhao
    Xu, Min
    Rodrigue, Denis
    BIORESOURCES, 2021, 16 (02) : 2774 - 2788
  • [6] Properties of 3D-Printed Wood Sawdust-Reinforced PLA Composites
    Narlioglu, Nasir
    Salan, Tufan
    Alma, Mehmet Hakki
    BIORESOURCES, 2021, 16 (03) : 5467 - 5480
  • [7] Physicochemical Properties of 3D-Printed Polylactic Acid/Hydroxyapatite Scaffolds
    Perez-Davila, Sara
    Garrido-Gulias, Natalia
    Gonzalez-Rodriguez, Laura
    Lopez-Alvarez, Miriam
    Serra, Julia
    Lopez-Periago, Jose Eugenio
    Gonzalez, Pio
    POLYMERS, 2023, 15 (13)
  • [8] Effects of liquid lubricants on the surface characteristics of 3D-printed polylactic acid
    Kim, Gang-Min
    Lee, Sung-Jun
    Kim, Chang-Lae
    SMART MATERIALS AND STRUCTURES, 2024, 33 (08)
  • [9] Experimental and numerical investigations on the thermoforming of 3D-printed polylactic acid parts
    Alexandru, Tudor George
    Popescu, Diana
    Constantin, Stochioiu
    Baciu, Florin
    RAPID PROTOTYPING JOURNAL, 2024, 30 (05) : 928 - 946
  • [10] Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites
    Zhang, Lei
    Lv, Shanshan
    Sun, Ce
    Wan, Lu
    Tan, Haiyan
    Zhang, Yanhua
    POLYMERS, 2017, 9 (11):