Field-free Magnetization Switching by Utilizing the Spin Hall Effect and Interlayer Exchange Coupling of Iridium

被引:60
作者
Liu, Yang [1 ,3 ]
Zhou, Bing [1 ,3 ]
Zhu, Jian-Gang [2 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Ctr Data Storage Syst, Pittsburgh, PA 15213 USA
关键词
ORBIT TORQUE; SPINTRONICS;
D O I
10.1038/s41598-018-37586-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetization switching by spin-orbit torque (SOT) via spin Hall effect represents as a competitive alternative to that by spin-transfer torque (STT) used for magnetoresistive random access memory (MRAM), as it doesn't require high-density current to go through the tunnel junction. For perpendicular MRAM, however, SOT driven switching of the free layer requires an external in-plane field, which poses limitation for viability in practical applications. Here we demonstrate field-free magnetization switching of a perpendicular magnet by utilizing an Iridium (Ir) layer. The Ir layer not only provides SOTs via spin Hall effect, but also induce interlayer exchange coupling with an in-plane magnetic layer that eliminates the need for the external field. Such dual functions of the Ir layer allows future build-up of magnetoresistive stacks for memory and logic applications. Experimental observations show that the SOT driven field-free magnetization reversal is characterized as domain nucleation and expansion. Micromagnetic modeling is carried out to provide in-depth understanding of the perpendicular magnetization reversal process in the presence of an in-plane exchange coupling field.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Spin currents and spin-orbit torques in ferromagnetic trilayers [J].
Baek, Seung-heon C. ;
Amin, Vivek P. ;
Oh, Young-Wan ;
Go, Gyungchoon ;
Lee, Seung-Jae ;
Lee, Geun-Hee ;
Kim, Kab-Jin ;
Stiles, M. D. ;
Park, Byong-Guk ;
Lee, Kyung-Jin .
NATURE MATERIALS, 2018, 17 (06) :509-+
[2]  
Bromberg D. M, 2014, IEDM, P792, DOI [10.1109/IEDM.2014.7047159, DOI 10.1109/IEDM.2014.7047159]
[3]   Advances and Future Prospects of Spin-Transfer Torque Random Access Memory [J].
Chen, E. ;
Apalkov, D. ;
Diao, Z. ;
Driskill-Smith, A. ;
Druist, D. ;
Lottis, D. ;
Nikitin, V. ;
Tang, X. ;
Watts, S. ;
Wang, S. ;
Wolf, S. A. ;
Ghosh, A. W. ;
Lu, J. W. ;
Poon, S. J. ;
Stan, M. ;
Butler, W. H. ;
Gupta, S. ;
Mewes, C. K. A. ;
Mewes, Tim ;
Visscher, P. B. .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) :1873-1878
[4]  
Cubukcu M., 2015, SPINTEC, P1
[5]   Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory [J].
Diao, Zhitao ;
Li, Zhanjie ;
Wang, Shengyuang ;
Ding, Yunfei ;
Panchula, Alex ;
Chen, Eugene ;
Wang, Lien-Chang ;
Huai, Yiming .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (16)
[6]  
Dyakonov MI, 2008, SPRINGER SER SOLID-S, V157, P211, DOI 10.1007/978-3-540-78820-1_8
[7]  
Emori S, 2013, NAT MATER, V12, P611, DOI [10.1038/NMAT3675, 10.1038/nmat3675]
[8]  
Fukami S, 2016, NAT NANOTECHNOL, V11, P621, DOI [10.1038/nnano.2016.29, 10.1038/NNANO.2016.29]
[9]  
Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/NMAT4566, 10.1038/nmat4566]
[10]  
Haazen PPJ, 2013, NAT MATER, V12, P299, DOI [10.1038/NMAT3553, 10.1038/nmat3553]