共 50 条
THE EXACT TRACIAL ROKHLIN PROPERTY
被引:0
作者:
Walters, S.
[1
]
机构:
[1] Univ No British Columbia, Dept Math & Stat, Prince George, BC V2N 4Z9, Canada
来源:
HOUSTON JOURNAL OF MATHEMATICS
|
2015年
/
41卷
/
01期
基金:
加拿大自然科学与工程研究理事会;
关键词:
C*-algebras;
irrational rotation algebras;
automorphisms;
Rokhlin property;
K-groups;
ALGEBRAS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
It is proved that the noncommutative Fourier transform automorphism sigma of the irrational rotation algebra has the exact tracial Rokhlin property a slightly stronger version of N. Christopher Phillips' tracial Rokhlin property. It essentially means that there are approximately central projections g such that g, sigma(g), sigma(2) (g), sigma(3) (g) are mutually orthogonal and 1-g-sigma(g)-sigma(2)(g)-sigma(3)(g) is a 'small' projection in the sense that it is Murray von Neumann equivalent to a subprojection of any prescribed projection. Consequently, the flip automorphism and the restriction of the Fourier transform to the flip-fixed point subalgebra also have the exact tracial Rokhlin property.
引用
收藏
页码:265 / 272
页数:8
相关论文