THE EXACT TRACIAL ROKHLIN PROPERTY

被引:0
作者
Walters, S. [1 ]
机构
[1] Univ No British Columbia, Dept Math & Stat, Prince George, BC V2N 4Z9, Canada
来源
HOUSTON JOURNAL OF MATHEMATICS | 2015年 / 41卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
C*-algebras; irrational rotation algebras; automorphisms; Rokhlin property; K-groups; ALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the noncommutative Fourier transform automorphism sigma of the irrational rotation algebra has the exact tracial Rokhlin property a slightly stronger version of N. Christopher Phillips' tracial Rokhlin property. It essentially means that there are approximately central projections g such that g, sigma(g), sigma(2) (g), sigma(3) (g) are mutually orthogonal and 1-g-sigma(g)-sigma(2)(g)-sigma(3)(g) is a 'small' projection in the sense that it is Murray von Neumann equivalent to a subprojection of any prescribed projection. Consequently, the flip automorphism and the restriction of the Fourier transform to the flip-fixed point subalgebra also have the exact tracial Rokhlin property.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条