Finite monodromy of some families of exponential sums

被引:4
作者
Rojas-Leon, Antonio [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Algebra, C Tarfia S-N, E-41012 Seville, Spain
关键词
Exponential sums; Monodromy; l-Adic cohomology; Almost perfect nonlinear functions;
D O I
10.1016/j.jnt.2018.06.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime p and an integer d > 1, we give a numerical criterion to decide whether the l-adic sheaf associated to the one-parameter exponential sums t bar righr arrow Sigma(x) psi(x(d) + tx) over F-p has finite monodromy or not, and work out some explicit cases where this is computable. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 11 条
  • [1] Aubry Y, 2010, CONTEMP MATH, V518, P23
  • [2] ZEROES OF POLYNOMIALS OVER FINITE FIELDS
    AX, J
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (02) : 255 - &
  • [3] On almost perfect nonlinear functions over F2n
    Berger, Thierry P.
    Canteaut, Anne
    Charpin, Pascale
    Laigle-Chapuy, Yann
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4160 - 4170
  • [4] Berndt B.C., 1998, Gauss and Jacobi Sums
  • [5] Deligne Pierre, 1980, I HAUTES ETUDES SCI, V52, P137
  • [6] Katz N. M., 1988, ANN MATH STUDIES, V116
  • [7] Katz N.M, 1990, Annals of Mathematics Studies, V124
  • [8] G2 and hypergeometric sheaves
    Katz, Nicholas M.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (02) : 175 - 223
  • [9] Katz Nicholas M., 1987, DUKE MATH J, V54
  • [10] Katz NM., 2005, MOMENTS MONODROMY PE