Kernel-Based Density Map Generation for Dense Object Counting

被引:99
作者
Wan, Jia [1 ]
Wang, Qingzhong [1 ]
Chan, Antoni B. [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
关键词
Crowd counting; vehicle counting; object counting; density map generation; density map estimation; deep learning; PEOPLE;
D O I
10.1109/TPAMI.2020.3022878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Crowd counting is an essential topic in computer vision due to its practical usage in surveillance systems. The typical design of crowd counting algorithms is divided into two steps. First, the ground-truth density maps of crowd images are generated from the ground-truth dot maps (density map generation), e.g., by convolving with a Gaussian kernel. Second, deep learning models are designed to predict a density map from an input image (density map estimation). The density map based counting methods that incorporate density map as the intermediate representation have improved counting performance dramatically. However, in the sense of end-to-end training, the hand-crafted methods used for generating the density maps may not be optimal for the particular network or dataset used. To address this issue, we propose an adaptive density map generator, which takes the annotation dot map as input, and learns a density map representation for a counter. The counter and generator are trained jointly within an end-to-end framework. We also show that the proposed framework can be applied to general dense object counting tasks. Extensive experiments are conducted on 10 datasets for 3 applications: crowd counting, vehicle counting, and general object counting. The experiment results on these datasets confirm the effectiveness of the proposed learnable density map representations.
引用
收藏
页码:1357 / 1370
页数:14
相关论文
共 64 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[3]   Scale Aggregation Network for Accurate and Efficient Crowd Counting [J].
Cao, Xinkun ;
Wang, Zhipeng ;
Zhao, Yanyun ;
Su, Fei .
COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 :757-773
[4]   Privacy preserving crowd monitoring: Counting people without people models or tracking [J].
Chan, Antoni B. ;
Liang, Zhang-Sheng John ;
Vasconcelos, Nuno .
2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, :1766-1772
[5]   Bayesian Poisson Regression for Crowd Counting [J].
Chan, Antoni B. ;
Vasconcelos, Nuno .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :545-551
[6]   PCC Net: Perspective Crowd Counting via Spatial Convolutional Network [J].
Gao, Junyu ;
Wang, Qi ;
Li, Xuelong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) :3486-3498
[7]  
Gao Junyu, 2019, ARXIV190702724
[8]  
Ge Weina, 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2913, DOI 10.1109/CVPRW.2009.5206621
[9]   Precise Detection in Densely Packed Scenes [J].
Goldman, Eran ;
Herzig, Roei ;
Eisenschtat, Aviv ;
Goldberger, Jacob ;
Hassner, Tal .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5222-5231
[10]   Extremely Overlapping Vehicle Counting [J].
Guerrero-Gomez-Olmedo, Ricardo ;
Torre-Jimenez, Beatriz ;
Lopez-Sastre, Roberto ;
Maldonado-Bascon, Saturnino ;
Onoro-Rubio, Daniel .
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 :423-431