On the degrees of irreducible factors of polynomials over a finite field

被引:5
作者
Knopfmacher, A [1 ]
机构
[1] Univ Witwatersrand, Dept Appl & Computat Math, ZA-2050 Wits, South Africa
关键词
D O I
10.1016/S0012-365X(98)00174-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (F) over tilde(q)[X] denote the multiplicative semigroups of monic polynomials in one indeterminate X, over a finite field F-q. We determine for each fixed q, the asymptotic average number of distinct degrees of the irreducible factors of a polynomial of degree n in (F) over tilde(q)[X]. The results are of relevance to various polynomial factorization algorithms. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 13 条
[1]   FACTORING POLYNOMIALS USING FEWER RANDOM BITS [J].
BACH, E ;
SHOUP, V .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :229-239
[2]  
BENOR M, 1981, P 22 IEEE S FDN COMP, P394
[3]  
CANTOR DG, 1981, MATH COMPUT, V36, P587, DOI 10.1090/S0025-5718-1981-0606517-5
[4]   SINGULARITY ANALYSIS OF GENERATING-FUNCTIONS [J].
FLAJOLET, P ;
ODLYZKO, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :216-240
[5]   GAUSSIAN LIMITING DISTRIBUTIONS FOR THE NUMBER OF COMPONENTS IN COMBINATORIAL STRUCTURES [J].
FLAJOLET, P ;
SORIA, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :165-182
[6]  
FLAJOLET P, 1996, LECT NOTES COMPUTER, V1099, P232, DOI DOI 10.1007/3-540-61440-0_131
[7]   DISTINCT DEGREE FACTORIZATIONS FOR POLYNOMIALS OVER A FINITE-FIELD [J].
KNOPFMACHER, A ;
WARLIMONT, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (06) :2235-2243
[8]   COUNTING IRREDUCIBLE FACTORS OF POLYNOMIALS OVER A FINITE-FIELD [J].
KNOPFMACHER, A ;
KNOPFMACHER, J .
DISCRETE MATHEMATICS, 1993, 112 (1-3) :103-118
[9]  
Knuth DE, 1981, ART COMPUTER PROGRAM, V2
[10]   ON THE DETERMINISTIC COMPLEXITY OF FACTORING POLYNOMIALS OVER FINITE-FIELDS [J].
SHOUP, V .
INFORMATION PROCESSING LETTERS, 1990, 33 (05) :261-267