Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery

被引:11
作者
Schiano, Concetta [1 ]
Franzese, Monica [2 ]
Geraci, Filippo [3 ]
Zanfardino, Mario [2 ]
Maiello, Ciro [4 ]
Palmieri, Vittorio [4 ]
Soricelli, Andrea [2 ,5 ]
Grimaldi, Vincenzo [2 ]
Coscioni, Enrico [6 ]
Salvatore, Marco [2 ]
Napoli, Claudio [1 ,2 ,7 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci DAMSS, I-80138 Naples, Italy
[2] IRCCS SDN, I-80121 Naples, Italy
[3] CNR, Inst Informat & Telemat, I-56124 Pisa, Italy
[4] Monaldi Hosp, Azienda Colli, Dept Cardiovasc Surg & Transplant, I-80131 Naples, Italy
[5] Univ Naples Parthenope, Dept Exercise & Wellness Sci, I-80133 Naples, Italy
[6] AOU San Giovanni Dio & Ruggid Aragona, Div Cardiac Surg, I-84131 Salerno, Italy
[7] Azienda Univ Policlin AOU, Div Clin Immunol Immunohematol Transfus Med & Tra, Reg Reference Lab Transplant Immunol LIT, Clin Dept Internal Med & Specialist Units, I-80131 Naples, Italy
关键词
RNA-sequencing; heart failure; gene expression analyses; machine learning; dilated cardiomyopathy; HEART-FAILURE;
D O I
10.3390/genes12121946
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Objectives: Dilated cardiomyopathy (DCM) is characterized by a specific transcriptome. Since the DCM molecular network is largely unknown, the aim was to identify specific disease-related molecular targets combining an original machine learning (ML) approach with protein-protein interaction network. Methods: The transcriptomic profiles of human myocardial tissues were investigated integrating an original computational approach, based on the Custom Decision Tree algorithm, in a differential expression bioinformatic framework. Validation was performed by quantitative real-time PCR. Results: Our preliminary study, using samples from transplanted tissues, allowed the discovery of specific DCM-related genes, including MYH6, NPPA, MT-RNR1 and NEAT1, already known to be involved in cardiomyopathies Interestingly, a combination of these expression profiles with clinical characteristics showed a significant association between NEAT1 and left ventricular end-diastolic diameter (LVEDD) (Rho = 0.73, p = 0.05), according to severity classification (NYHA-class III). Conclusions: The use of the ML approach was useful to discover preliminary specific genes that could lead to a rapid selection of molecular targets correlated with DCM clinical parameters. For the first time, NEAT1 under-expression was significantly associated with LVEDD in the human heart.
引用
收藏
页数:14
相关论文
共 29 条
  • [11] Lou YP, 2018, INT J CLIN EXP PATHO, V11, P3222
  • [12] Comparative RNA-Seq and Microarray Analysis of Gene Expression Changes in B-Cell Lymphomas of Canis familiaris
    Mooney, Marie
    Bond, Jeffrey
    Monks, Noel
    Eugster, Emily
    Cherba, David
    Berlinski, Pamela
    Kamerling, Steve
    Marotti, Keith
    Simpson, Heather
    Rusk, Tony
    Tembe, Waibhav
    Legendre, Christophe
    Benson, Hollie
    Liang, Winnie
    Webb, Craig Paul
    [J]. PLOS ONE, 2013, 8 (04):
  • [13] Napoli C., HLTH RISK MANAG, V247, P254, DOI [10.2147/VHRM.S287082, DOI 10.2147/VHRM.S287082]
  • [14] Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs
    Ounzain, Samir
    Micheletti, Rudi
    Beckmann, Tal
    Schroen, Blanche
    Alexanian, Michael
    Pezzuto, Iole
    Crippa, Stefania
    Nemir, Mohamed
    Sarre, Alexandre
    Johnson, Rory
    Dauvillier, Jerome
    Burdet, Frederic
    Ibberson, Mark
    Guigo, Roderic
    Xenarios, Ioannis
    Heymans, Stephane
    Pedrazzini, Thierry
    [J]. EUROPEAN HEART JOURNAL, 2015, 36 (06) : 353 - +
  • [15] Identification of NPPA variants associated with atrial fibrillation in a Chinese GeneID population
    Ren, Xiang
    Xu, Chengqi
    Zhan, Chengxiong
    Yang, Yanzong
    Shi, Lisong
    Wang, Fan
    Wang, Chuchu
    Xia, Yunlong
    Yang, Bo
    Wu, Gang
    Wang, Pengyun
    Li, Xiuchun
    Wang, Dan
    Xiong, Xin
    Liu, Jinqiu
    Liu, Ying
    Liu, Mugen
    Liu, Jingyu
    Tu, Xin
    Wang, Qing Kenneth
    [J]. CLINICA CHIMICA ACTA, 2010, 411 (7-8) : 481 - 485
  • [16] limma powers differential expression analyses for RNA-sequencing and microarray studies
    Ritchie, Matthew E.
    Phipson, Belinda
    Wu, Di
    Hu, Yifang
    Law, Charity W.
    Shi, Wei
    Smyth, Gordon K.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (07) : e47
  • [17] The epigenetic promise to improve prognosis of heart failure and heart transplantation
    Sabia, Chiara
    Picascia, Antonietta
    Grimaldi, Vincenzo
    Amarelli, Cristiano
    Maiello, Ciro
    Napoli, Claudio
    [J]. TRANSPLANTATION REVIEWS, 2017, 31 (04) : 249 - 256
  • [18] Integrated analysis of DNA methylation profile of HLA-G gene and imaging in coronary heart disease: Pilot study
    Schiano, Concetta
    Benincasa, Giuditta
    Infante, Teresa
    Franzese, Monica
    Castaldo, Rossana
    Fiorito, Carmela
    Mansuetol, Gelsomina
    Grimaldi, Vincenzo
    Della Valle, Giovanni
    Fatone, Gerardo
    Soricelli, Andrea
    Nicoletti, Giovanni Francesco
    Ruocce, Antonio
    Maure, Ciro
    Salvatore, Marco
    Napoli, Claudio
    [J]. PLOS ONE, 2020, 15 (08):
  • [19] Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing
    Schiano, Concetta
    Costa, Valerio
    Aprile, Marianna
    Grimaldi, Vincenzo
    Maiello, Ciro
    Esposito, Roberta
    Soricelli, Andrea
    Colantuoni, Vittorio
    Donatelli, Francesco
    Ciccodicola, Alfredo
    Napoli, Claudio
    [J]. CARDIOLOGY JOURNAL, 2017, 24 (05) : 539 - 553
  • [20] Splicing regulators in endothelial cell differentiation
    Schiano, Concetta
    Rienzo, Monica
    Casamassimi, Amelia
    Soricelli, Andrea
    Napoli, Claudio
    [J]. JOURNAL OF CARDIOVASCULAR MEDICINE, 2017, 18 (10) : 742 - 749