Odd viscosity in chiral active fluids

被引:227
作者
Banerjee, Debarghya [1 ]
Souslov, Anton [1 ,2 ,3 ]
Abanov, Alexander G. [4 ,5 ]
Vitelli, Vincenzo [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Lorentz, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[4] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
CELLS;
D O I
10.1038/s41467-017-01378-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the hydrodynamics of fluids composed of self-spinning objects such as chiral grains or colloidal particles subject to torques. These chiral active fluids break both parity and time-reversal symmetries in their non-equilibrium steady states. As a result, the constitutive relations of chiral active media display a dissipationless linear-response coefficient called odd (or equivalently, Hall) viscosity. This odd viscosity does not lead to energy dissipation, but gives rise to a flow perpendicular to applied pressure. We show how odd viscosity arises from non-linear equations of hydrodynamics with rotational degrees of freedom, once linearized around a non-equilibrium steady state characterized by large spinning speeds. Next, we explore odd viscosity in compressible fluids and suggest how our findings can be tested in the context of shock propagation experiments. Finally, we show how odd viscosity in weakly compressible chiral active fluids can lead to density and pressure excess within vortex cores.
引用
收藏
页数:12
相关论文
共 41 条
  • [11] Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion, and dissipation
    Kulkarni, Manas
    Abanov, Alexander G.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03):
  • [12] Landau L.D., 2013, Fluid Mechanics: Volume 6, V6
  • [13] Swimming at low Reynolds number in fluids with odd, or Hall, viscosity
    Lapa, Matthew F.
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW E, 2014, 89 (04)
  • [14] Viscosity of an electro-rheological suspension with internal rotations
    Lemaire, E.
    Lobry, L.
    Pannacci, N.
    Peters, F.
    [J]. JOURNAL OF RHEOLOGY, 2008, 52 (03) : 769 - 783
  • [15] Membranes with rotating motors -: art. no. 108104
    Lenz, P
    Joanny, JF
    Jülicher, F
    Prost, J
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (10)
  • [16] The action principle for generalized fluid motion including gyroviscosity
    Lingam, M.
    Morrison, P. J.
    [J]. PHYSICS LETTERS A, 2014, 378 (47) : 3526 - 3532
  • [17] Phenomenology of nonrelativistic parity-violating hydrodynamics in 2+1 dimensions
    Lucas, Andrew
    Surowka, Piotr
    [J]. PHYSICAL REVIEW E, 2014, 90 (06):
  • [18] Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects
    Maggi, Claudio
    Saglimbeni, Filippo
    Dipalo, Michele
    De Angelis, Francesco
    Di Leonardo, Roberto
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [19] Hydrodynamics of soft active matter
    Marchetti, M. C.
    Joanny, J. F.
    Ramaswamy, S.
    Liverpool, T. B.
    Prost, J.
    Rao, Madan
    Simha, R. Aditi
    [J]. REVIEWS OF MODERN PHYSICS, 2013, 85 (03) : 1143 - 1189
  • [20] Galilean invariance at quantum Hall edge
    Moroz, Sergej
    Hoyos, Carlos
    Radzihovsky, Leo
    [J]. PHYSICAL REVIEW B, 2015, 91 (19)