An MRF-Based Multigranularity Edge-Preservation Optimization for Semantic Segmentation of Remote Sensing Images

被引:8
|
作者
Zheng, Chen [1 ,2 ]
Chen, Yuncheng [1 ]
Shao, Jie [1 ]
Wang, Leiguang [3 ,4 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Henan Univ, Inst Appl Math, Henan Engn Res Ctr Artificial Intelligence Theory, Kaifeng 475004, Peoples R China
[3] Southwest Forestry Univ, Inst Big Data & Artificial Intelligence, Kunming 650224, Yunnan, Peoples R China
[4] Southwest Forestry Univ, Key Lab State Forestry Adm Forestry & Ecol Big Da, Kunming 650224, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Biological system modeling; Image edge detection; Image segmentation; Markov processes; Data models; Spatial resolution; Semantics; Edge preservation; granularity; Markov random field (MRF); object analysis; segmentation; RANDOM-FIELD MODEL; INFORMATION;
D O I
10.1109/LGRS.2021.3058939
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation is one of the most important tasks in the field of remote sensing image processing. Many methods have been proposed to realize it at the pixel granularity or object granularity. Specifically, the pixel-based methods usually can effectively extract the detailed information and edges, and the object-based methods can keep the internal consistency of each land cover or land use. The Markov random field (MRF) model provides a statistical way to combine the advantages of both pixel and object granularities together. However, current MRF-based methods still face a problem, that is, how to ensure that the advantages of different granularities will complement each other, not that disadvantages will affect advantages. To solve this problem, a new multigranularity edge-preservation optimization is proposed in this letter. The proposed method first represents the image with a series of granularities from the object to the pixel by downsampling. Then, the MRF model is defined on each granularity. By defining an edge set for each granularity, during the process of downsampling, the proposed method can continuously correct edges while maintaining intraclass consistency. Experiments of Gaofen-2 and SPOT5 demonstrate the effectiveness of the proposed method. Moreover, the proposed method can be also used as the postprocessing step for deep learning. The experiment of the Pavia University hyperspectral image illustrates it for an instance of DeepLab v3+.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [22] Progressive Guidance Edge Perception Network for Semantic Segmentation of Remote-Sensing Images
    Pan, Shaoming
    Tao, Yulong
    Chen, Xiaoshu
    Chong, Yanwen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] Semantic segmentation network combined with edge detection for building extraction in remote sensing images
    Jiang, Zhongze
    Chen, Zhong
    Ji, Kaixiang
    Yang, Jian
    MIPPR 2019: PATTERN RECOGNITION AND COMPUTER VISION, 2020, 11430
  • [24] Semantic Segmentation of Urban Remote Sensing Images Based on Deep Learning
    Liu, Jingyi
    Wu, Jiawei
    Xie, Hongfei
    Xiao, Dong
    Ran, Mengying
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [25] Semantic segmentation of remote sensing images based on neural architecture search
    Zhou P.
    Yang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 47 - 57and77
  • [26] Semantic segmentation of remote sensing images based on deep learning methods
    Huang, Cong
    Yang, Yao
    Wang, Huajun
    Ma, Yu
    Zhao, Jinquan
    Wan, Jun
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [27] Segmentation of remote-sensing images by supervised TS-MRF
    Poggi, G
    Scarpa, G
    Zerubia, J
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1867 - 1870
  • [28] Novel Convolutions for Semantic Segmentation of Remote Sensing Images
    Xiao, Ruijie
    Zhong, Chuan
    Zeng, Wankang
    Cheng, Ming
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Semantic Segmentation of Images Obtained by Remote Sensing of the Earth
    Igonin, Dmitry M.
    Tiumentsev, Yury V.
    ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH III, 2020, 856 : 309 - 318
  • [30] A NEW SEMANTIC SEGMENTATION MODEL FOR REMOTE SENSING IMAGES
    Wei, Xin
    Guo, Yajing
    Gao, Xin
    Yan, Menglong
    Sun, Xian
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1776 - 1779