Practical path planning techniques in overtaking for autonomous shuttles

被引:15
作者
Malayjerdi, Ehsan [1 ]
Sell, Raivo [1 ]
Malayjerdi, Mohsen [1 ]
Udal, Andres [2 ]
Bellone, Mauro [3 ]
机构
[1] Tallinn Univ Technol, Dept Mech & Ind Engn, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
[2] Tallinn Univ Technol, Dept Informat Technol, Tallinn, Estonia
[3] Tallinn Univ Technol, Smart City Ctr Excellence, Tallinn, Estonia
基金
欧盟地平线“2020”;
关键词
automated vehicle; optimization; path planning; trajectory evaluation; VEHICLES; TRACKING; DECISION;
D O I
10.1002/rob.22057
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper proposes a reliable optimized sigmoid-based path planning algorithm that ensures smooth, fast and safe overtaking maneuver, while maintaining the necessary safety distance. In the proposed method, the desired smoothness of trajectories, the changes in steering angle and the lateral acceleration are controlled in a robust way. This paper describes the simulations, and the confirming real-world experiments, conducted using the autonomous shuttle iseAuto. Our results suggest that the sigmoid A-star algorithm leads to a smoother and more reliable motion when compared to other two standard methods. Specifically, the abruptness of necessary steering angle changes is reduced by factor of 4, and approaching the level of an experienced driver-like maneuver.
引用
收藏
页码:410 / 425
页数:16
相关论文
共 55 条
[1]   Collision avoidance for autonomous vehicle using MPC and time varying Sigmoid safety constraints [J].
Ammour, M. ;
Orjuela, R. ;
Basset, M. .
IFAC PAPERSONLINE, 2021, 54 (10) :39-44
[2]  
Ammour M, 2020, MED C CONTR AUTOMAT, P13, DOI [10.1109/med48518.2020.9183082, 10.1109/MED48518.2020.9183082]
[3]  
Ben-Messaoud W, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES 2018)
[4]  
CARROLL KP, 1992, PROCEEDINGS OF THE 1992 SYMPOSIUM ON AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY, P79, DOI 10.1109/AUV.1992.225191
[5]   Virtual Target-Based Overtaking Decision, Motion Planning, and Control of Autonomous Vehicles [J].
Chae, Heungseok ;
Yi, Kyongsu .
IEEE ACCESS, 2020, 8 :51363-51376
[6]  
Christophe F., 2009, INT DESIGN ENG TECHN, V49026, P249
[7]  
Claussmann L, 2015, 2015 EUROPEAN CONTROL CONFERENCE (ECC), P2976, DOI 10.1109/ECC.2015.7330990
[8]   Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects [J].
Dixit, Shilp ;
Fallah, Saber ;
Montanaro, Umberto ;
Dianati, Mehrdad ;
Stevens, Alan ;
Mccullough, Francis ;
Mouzakitis, Alexandros .
ANNUAL REVIEWS IN CONTROL, 2018, 45 :76-86
[9]   Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments [J].
Dolgov, Dmitri ;
Thrun, Sebastian ;
Montemerlo, Michael ;
Diebel, James .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (05) :485-501
[10]   Path planning with modified A star algorithm for a mobile robot [J].
Duchon, Frantisek ;
Babinec, Andrej ;
Kajan, Martin ;
Beno, Peter ;
Florek, Martin ;
Fico, Tomas ;
Jurisica, Ladislav .
MODELLING OF MECHANICAL AND MECHATRONIC SYSTEMS, 2014, 96 :59-69